Spaces:
Paused
Paused
Commit
·
59b8f8d
1
Parent(s):
dc4c093
Update the model codes, including the previous inconsistencies.
Browse files- models/backbones/build_backbone.py +1 -1
- models/backbones/swin_v1.py +0 -25
- models/{baseline.py → birefnet.py} +44 -47
- models/modules/aspp.py +7 -50
- models/modules/decoder_blocks.py +4 -4
- models/refinement/refiner.py +1 -1
models/backbones/build_backbone.py
CHANGED
|
@@ -2,7 +2,7 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from collections import OrderedDict
|
| 4 |
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
| 5 |
-
from models.backbones.pvt_v2 import pvt_v2_b2, pvt_v2_b5
|
| 6 |
from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
| 7 |
from config import Config
|
| 8 |
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from collections import OrderedDict
|
| 4 |
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
| 5 |
+
from models.backbones.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
|
| 6 |
from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
| 7 |
from config import Config
|
| 8 |
|
models/backbones/swin_v1.py
CHANGED
|
@@ -578,31 +578,6 @@ class SwinTransformer(nn.Module):
|
|
| 578 |
for param in m.parameters():
|
| 579 |
param.requires_grad = False
|
| 580 |
|
| 581 |
-
def init_weights(self, pretrained=None):
|
| 582 |
-
"""Initialize the weights in backbone.
|
| 583 |
-
|
| 584 |
-
Args:
|
| 585 |
-
pretrained (str, optional): Path to pre-trained weights.
|
| 586 |
-
Defaults to None.
|
| 587 |
-
"""
|
| 588 |
-
|
| 589 |
-
def _init_weights(m):
|
| 590 |
-
if isinstance(m, nn.Linear):
|
| 591 |
-
trunc_normal_(m.weight, std=.02)
|
| 592 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 593 |
-
nn.init.constant_(m.bias, 0)
|
| 594 |
-
elif isinstance(m, nn.LayerNorm):
|
| 595 |
-
nn.init.constant_(m.bias, 0)
|
| 596 |
-
nn.init.constant_(m.weight, 1.0)
|
| 597 |
-
|
| 598 |
-
if isinstance(pretrained, str):
|
| 599 |
-
self.apply(_init_weights)
|
| 600 |
-
logger = get_root_logger()
|
| 601 |
-
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
| 602 |
-
elif pretrained is None:
|
| 603 |
-
self.apply(_init_weights)
|
| 604 |
-
else:
|
| 605 |
-
raise TypeError('pretrained must be a str or None')
|
| 606 |
|
| 607 |
def forward(self, x):
|
| 608 |
"""Forward function."""
|
|
|
|
| 578 |
for param in m.parameters():
|
| 579 |
param.requires_grad = False
|
| 580 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
def forward(self, x):
|
| 583 |
"""Forward function."""
|
models/{baseline.py → birefnet.py}
RENAMED
|
@@ -41,14 +41,6 @@ class BiRefNet(nn.Module):
|
|
| 41 |
])
|
| 42 |
|
| 43 |
self.decoder = Decoder(channels)
|
| 44 |
-
|
| 45 |
-
if self.config.locate_head:
|
| 46 |
-
self.locate_header = nn.ModuleList([
|
| 47 |
-
BasicDecBlk(channels[0], channels[-1]),
|
| 48 |
-
nn.Sequential(
|
| 49 |
-
nn.Conv2d(channels[-1], 1, 1, 1, 0),
|
| 50 |
-
)
|
| 51 |
-
])
|
| 52 |
|
| 53 |
if self.config.ender:
|
| 54 |
self.dec_end = nn.Sequential(
|
|
@@ -60,7 +52,7 @@ class BiRefNet(nn.Module):
|
|
| 60 |
# refine patch-level segmentation
|
| 61 |
if self.config.refine:
|
| 62 |
if self.config.refine == 'itself':
|
| 63 |
-
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
|
| 64 |
else:
|
| 65 |
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
| 66 |
|
|
@@ -105,20 +97,6 @@ class BiRefNet(nn.Module):
|
|
| 105 |
)
|
| 106 |
return (x1, x2, x3, x4), class_preds
|
| 107 |
|
| 108 |
-
# def forward_loc(self, x):
|
| 109 |
-
# ########## Encoder ##########
|
| 110 |
-
# (x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
| 111 |
-
# if self.config.squeeze_block:
|
| 112 |
-
# x4 = self.squeeze_module(x4)
|
| 113 |
-
# if self.config.locate_head:
|
| 114 |
-
# locate_preds = self.locate_header[1](
|
| 115 |
-
# F.interpolate(
|
| 116 |
-
# self.locate_header[0](
|
| 117 |
-
# F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 118 |
-
# ), size=x.shape[2:], mode='bilinear', align_corners=True
|
| 119 |
-
# )
|
| 120 |
-
# )
|
| 121 |
-
|
| 122 |
def forward_ori(self, x):
|
| 123 |
########## Encoder ##########
|
| 124 |
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
|
@@ -131,22 +109,22 @@ class BiRefNet(nn.Module):
|
|
| 131 |
scaled_preds = self.decoder(features)
|
| 132 |
return scaled_preds, class_preds
|
| 133 |
|
| 134 |
-
def forward_ref(self, x, pred):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
def forward_ref_end(self, x):
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
|
| 152 |
# def forward(self, x):
|
|
@@ -181,6 +159,7 @@ class Decoder(nn.Module):
|
|
| 181 |
DBlock = SimpleConvs
|
| 182 |
ic = 64
|
| 183 |
ipt_cha_opt = 1
|
|
|
|
| 184 |
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
| 185 |
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
| 186 |
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
|
@@ -188,7 +167,7 @@ class Decoder(nn.Module):
|
|
| 188 |
else:
|
| 189 |
self.split = None
|
| 190 |
|
| 191 |
-
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
| 192 |
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
| 193 |
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
| 194 |
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
|
@@ -205,15 +184,15 @@ class Decoder(nn.Module):
|
|
| 205 |
|
| 206 |
if self.config.out_ref:
|
| 207 |
_N = 16
|
| 208 |
-
|
| 209 |
-
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
|
| 210 |
-
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
|
| 211 |
|
| 212 |
-
|
| 213 |
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 214 |
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 215 |
|
| 216 |
-
|
| 217 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 218 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 219 |
|
|
@@ -238,14 +217,31 @@ class Decoder(nn.Module):
|
|
| 238 |
else:
|
| 239 |
x, x1, x2, x3, x4 = features
|
| 240 |
outs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
p4 = self.decoder_block4(x4)
|
| 242 |
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
| 244 |
_p3 = _p4 + self.lateral_block4(x3)
|
|
|
|
| 245 |
if self.config.dec_ipt:
|
| 246 |
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
| 247 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 248 |
-
|
| 249 |
p3 = self.decoder_block3(_p3)
|
| 250 |
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
| 251 |
if self.config.out_ref:
|
|
@@ -268,10 +264,10 @@ class Decoder(nn.Module):
|
|
| 268 |
p3 = p3 * gdt_attn_3
|
| 269 |
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 270 |
_p2 = _p3 + self.lateral_block3(x2)
|
|
|
|
| 271 |
if self.config.dec_ipt:
|
| 272 |
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
| 273 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 274 |
-
|
| 275 |
p2 = self.decoder_block2(_p2)
|
| 276 |
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
| 277 |
if self.config.out_ref:
|
|
@@ -289,12 +285,13 @@ class Decoder(nn.Module):
|
|
| 289 |
p2 = p2 * gdt_attn_2
|
| 290 |
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
| 291 |
_p1 = _p2 + self.lateral_block2(x1)
|
|
|
|
| 292 |
if self.config.dec_ipt:
|
| 293 |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 294 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 295 |
-
|
| 296 |
_p1 = self.decoder_block1(_p1)
|
| 297 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
|
|
|
| 298 |
if self.config.dec_ipt:
|
| 299 |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 300 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
|
|
|
| 41 |
])
|
| 42 |
|
| 43 |
self.decoder = Decoder(channels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
if self.config.ender:
|
| 46 |
self.dec_end = nn.Sequential(
|
|
|
|
| 52 |
# refine patch-level segmentation
|
| 53 |
if self.config.refine:
|
| 54 |
if self.config.refine == 'itself':
|
| 55 |
+
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
| 56 |
else:
|
| 57 |
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
| 58 |
|
|
|
|
| 97 |
)
|
| 98 |
return (x1, x2, x3, x4), class_preds
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def forward_ori(self, x):
|
| 101 |
########## Encoder ##########
|
| 102 |
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
|
|
|
| 109 |
scaled_preds = self.decoder(features)
|
| 110 |
return scaled_preds, class_preds
|
| 111 |
|
| 112 |
+
# def forward_ref(self, x, pred):
|
| 113 |
+
# # refine patch-level segmentation
|
| 114 |
+
# if pred.shape[2:] != x.shape[2:]:
|
| 115 |
+
# pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 116 |
+
# # pred = pred.sigmoid()
|
| 117 |
+
# if self.config.refine == 'itself':
|
| 118 |
+
# x = self.stem_layer(torch.cat([x, pred], dim=1))
|
| 119 |
+
# scaled_preds, class_preds = self.forward_ori(x)
|
| 120 |
+
# else:
|
| 121 |
+
# scaled_preds = self.refiner([x, pred])
|
| 122 |
+
# class_preds = None
|
| 123 |
+
# return scaled_preds, class_preds
|
| 124 |
|
| 125 |
+
# def forward_ref_end(self, x):
|
| 126 |
+
# # remove the grids of concatenated preds
|
| 127 |
+
# return self.dec_end(x) if self.config.ender else x
|
| 128 |
|
| 129 |
|
| 130 |
# def forward(self, x):
|
|
|
|
| 159 |
DBlock = SimpleConvs
|
| 160 |
ic = 64
|
| 161 |
ipt_cha_opt = 1
|
| 162 |
+
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
| 163 |
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
| 164 |
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
| 165 |
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
|
|
|
| 167 |
else:
|
| 168 |
self.split = None
|
| 169 |
|
| 170 |
+
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
|
| 171 |
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
| 172 |
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
| 173 |
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
|
|
|
| 184 |
|
| 185 |
if self.config.out_ref:
|
| 186 |
_N = 16
|
| 187 |
+
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 188 |
+
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 189 |
+
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 190 |
|
| 191 |
+
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 192 |
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 193 |
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 194 |
|
| 195 |
+
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 196 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 197 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 198 |
|
|
|
|
| 217 |
else:
|
| 218 |
x, x1, x2, x3, x4 = features
|
| 219 |
outs = []
|
| 220 |
+
|
| 221 |
+
if self.config.dec_ipt:
|
| 222 |
+
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
| 223 |
+
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 224 |
p4 = self.decoder_block4(x4)
|
| 225 |
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
| 226 |
+
if self.config.out_ref:
|
| 227 |
+
p4_gdt = self.gdt_convs_4(p4)
|
| 228 |
+
if self.training:
|
| 229 |
+
# >> GT:
|
| 230 |
+
m4_dia = m4
|
| 231 |
+
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
| 232 |
+
outs_gdt_label.append(gdt_label_main_4)
|
| 233 |
+
# >> Pred:
|
| 234 |
+
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
| 235 |
+
outs_gdt_pred.append(gdt_pred_4)
|
| 236 |
+
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
| 237 |
+
# >> Finally:
|
| 238 |
+
p4 = p4 * gdt_attn_4
|
| 239 |
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
| 240 |
_p3 = _p4 + self.lateral_block4(x3)
|
| 241 |
+
|
| 242 |
if self.config.dec_ipt:
|
| 243 |
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
| 244 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
|
|
|
| 245 |
p3 = self.decoder_block3(_p3)
|
| 246 |
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
| 247 |
if self.config.out_ref:
|
|
|
|
| 264 |
p3 = p3 * gdt_attn_3
|
| 265 |
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 266 |
_p2 = _p3 + self.lateral_block3(x2)
|
| 267 |
+
|
| 268 |
if self.config.dec_ipt:
|
| 269 |
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
| 270 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
|
|
|
| 271 |
p2 = self.decoder_block2(_p2)
|
| 272 |
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
| 273 |
if self.config.out_ref:
|
|
|
|
| 285 |
p2 = p2 * gdt_attn_2
|
| 286 |
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
| 287 |
_p1 = _p2 + self.lateral_block2(x1)
|
| 288 |
+
|
| 289 |
if self.config.dec_ipt:
|
| 290 |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 291 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
|
|
|
| 292 |
_p1 = self.decoder_block1(_p1)
|
| 293 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 294 |
+
|
| 295 |
if self.config.dec_ipt:
|
| 296 |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 297 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
models/modules/aspp.py
CHANGED
|
@@ -8,56 +8,12 @@ from config import Config
|
|
| 8 |
config = Config()
|
| 9 |
|
| 10 |
|
| 11 |
-
class ASPPComplex(nn.Module):
|
| 12 |
-
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
| 13 |
-
super(ASPPComplex, self).__init__()
|
| 14 |
-
self.down_scale = 1
|
| 15 |
-
if out_channels is None:
|
| 16 |
-
out_channels = in_channels
|
| 17 |
-
self.in_channelster = 256 // self.down_scale
|
| 18 |
-
if output_stride == 16:
|
| 19 |
-
dilations = [1, 6, 12, 18]
|
| 20 |
-
elif output_stride == 8:
|
| 21 |
-
dilations = [1, 12, 24, 36]
|
| 22 |
-
else:
|
| 23 |
-
raise NotImplementedError
|
| 24 |
-
|
| 25 |
-
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
|
| 26 |
-
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
|
| 27 |
-
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
|
| 28 |
-
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
|
| 29 |
-
|
| 30 |
-
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
| 31 |
-
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
| 32 |
-
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 33 |
-
nn.ReLU(inplace=True))
|
| 34 |
-
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
| 35 |
-
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 36 |
-
self.relu = nn.ReLU(inplace=True)
|
| 37 |
-
self.dropout = nn.Dropout(0.5)
|
| 38 |
-
|
| 39 |
-
def forward(self, x):
|
| 40 |
-
x1 = self.aspp1(x)
|
| 41 |
-
x2 = self.aspp2(x)
|
| 42 |
-
x3 = self.aspp3(x)
|
| 43 |
-
x4 = self.aspp4(x)
|
| 44 |
-
x5 = self.global_avg_pool(x)
|
| 45 |
-
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
| 46 |
-
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
| 47 |
-
|
| 48 |
-
x = self.conv1(x)
|
| 49 |
-
x = self.bn1(x)
|
| 50 |
-
x = self.relu(x)
|
| 51 |
-
|
| 52 |
-
return self.dropout(x)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
class _ASPPModule(nn.Module):
|
| 56 |
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
| 57 |
super(_ASPPModule, self).__init__()
|
| 58 |
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
| 59 |
stride=1, padding=padding, dilation=dilation, bias=False)
|
| 60 |
-
self.bn = nn.BatchNorm2d(planes)
|
| 61 |
self.relu = nn.ReLU(inplace=True)
|
| 62 |
|
| 63 |
def forward(self, x):
|
|
@@ -66,6 +22,7 @@ class _ASPPModule(nn.Module):
|
|
| 66 |
|
| 67 |
return self.relu(x)
|
| 68 |
|
|
|
|
| 69 |
class ASPP(nn.Module):
|
| 70 |
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
| 71 |
super(ASPP, self).__init__()
|
|
@@ -90,7 +47,7 @@ class ASPP(nn.Module):
|
|
| 90 |
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 91 |
nn.ReLU(inplace=True))
|
| 92 |
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
| 93 |
-
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 94 |
self.relu = nn.ReLU(inplace=True)
|
| 95 |
self.dropout = nn.Dropout(0.5)
|
| 96 |
|
|
@@ -116,7 +73,7 @@ class _ASPPModuleDeformable(nn.Module):
|
|
| 116 |
super(_ASPPModuleDeformable, self).__init__()
|
| 117 |
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
| 118 |
stride=1, padding=padding, bias=False)
|
| 119 |
-
self.bn = nn.BatchNorm2d(planes)
|
| 120 |
self.relu = nn.ReLU(inplace=True)
|
| 121 |
|
| 122 |
def forward(self, x):
|
|
@@ -127,7 +84,7 @@ class _ASPPModuleDeformable(nn.Module):
|
|
| 127 |
|
| 128 |
|
| 129 |
class ASPPDeformable(nn.Module):
|
| 130 |
-
def __init__(self, in_channels, out_channels=None,
|
| 131 |
super(ASPPDeformable, self).__init__()
|
| 132 |
self.down_scale = 1
|
| 133 |
if out_channels is None:
|
|
@@ -136,7 +93,7 @@ class ASPPDeformable(nn.Module):
|
|
| 136 |
|
| 137 |
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
| 138 |
self.aspp_deforms = nn.ModuleList([
|
| 139 |
-
_ASPPModuleDeformable(in_channels, self.in_channelster,
|
| 140 |
])
|
| 141 |
|
| 142 |
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
|
@@ -144,7 +101,7 @@ class ASPPDeformable(nn.Module):
|
|
| 144 |
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 145 |
nn.ReLU(inplace=True))
|
| 146 |
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
| 147 |
-
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 148 |
self.relu = nn.ReLU(inplace=True)
|
| 149 |
self.dropout = nn.Dropout(0.5)
|
| 150 |
|
|
|
|
| 8 |
config = Config()
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class _ASPPModule(nn.Module):
|
| 12 |
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
| 13 |
super(_ASPPModule, self).__init__()
|
| 14 |
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
| 15 |
stride=1, padding=padding, dilation=dilation, bias=False)
|
| 16 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
| 17 |
self.relu = nn.ReLU(inplace=True)
|
| 18 |
|
| 19 |
def forward(self, x):
|
|
|
|
| 22 |
|
| 23 |
return self.relu(x)
|
| 24 |
|
| 25 |
+
|
| 26 |
class ASPP(nn.Module):
|
| 27 |
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
| 28 |
super(ASPP, self).__init__()
|
|
|
|
| 47 |
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 48 |
nn.ReLU(inplace=True))
|
| 49 |
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
| 50 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 51 |
self.relu = nn.ReLU(inplace=True)
|
| 52 |
self.dropout = nn.Dropout(0.5)
|
| 53 |
|
|
|
|
| 73 |
super(_ASPPModuleDeformable, self).__init__()
|
| 74 |
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
| 75 |
stride=1, padding=padding, bias=False)
|
| 76 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
| 77 |
self.relu = nn.ReLU(inplace=True)
|
| 78 |
|
| 79 |
def forward(self, x):
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
class ASPPDeformable(nn.Module):
|
| 87 |
+
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
| 88 |
super(ASPPDeformable, self).__init__()
|
| 89 |
self.down_scale = 1
|
| 90 |
if out_channels is None:
|
|
|
|
| 93 |
|
| 94 |
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
| 95 |
self.aspp_deforms = nn.ModuleList([
|
| 96 |
+
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
|
| 97 |
])
|
| 98 |
|
| 99 |
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
|
|
|
| 101 |
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 102 |
nn.ReLU(inplace=True))
|
| 103 |
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
| 104 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 105 |
self.relu = nn.ReLU(inplace=True)
|
| 106 |
self.dropout = nn.Dropout(0.5)
|
| 107 |
|
models/modules/decoder_blocks.py
CHANGED
|
@@ -19,8 +19,8 @@ class BasicDecBlk(nn.Module):
|
|
| 19 |
elif config.dec_att == 'ASPPDeformable':
|
| 20 |
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 21 |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 22 |
-
self.bn_in = nn.BatchNorm2d(inter_channels)
|
| 23 |
-
self.bn_out = nn.BatchNorm2d(out_channels)
|
| 24 |
|
| 25 |
def forward(self, x):
|
| 26 |
x = self.conv_in(x)
|
|
@@ -41,7 +41,7 @@ class ResBlk(nn.Module):
|
|
| 41 |
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
| 42 |
|
| 43 |
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
| 44 |
-
self.bn_in = nn.BatchNorm2d(inter_channels)
|
| 45 |
self.relu_in = nn.ReLU(inplace=True)
|
| 46 |
|
| 47 |
if config.dec_att == 'ASPP':
|
|
@@ -50,7 +50,7 @@ class ResBlk(nn.Module):
|
|
| 50 |
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 51 |
|
| 52 |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 53 |
-
self.bn_out = nn.BatchNorm2d(out_channels)
|
| 54 |
|
| 55 |
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
| 56 |
|
|
|
|
| 19 |
elif config.dec_att == 'ASPPDeformable':
|
| 20 |
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 21 |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 22 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
| 23 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 24 |
|
| 25 |
def forward(self, x):
|
| 26 |
x = self.conv_in(x)
|
|
|
|
| 41 |
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
| 42 |
|
| 43 |
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
| 44 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
| 45 |
self.relu_in = nn.ReLU(inplace=True)
|
| 46 |
|
| 47 |
if config.dec_att == 'ASPP':
|
|
|
|
| 50 |
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 51 |
|
| 52 |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 53 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 54 |
|
| 55 |
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
| 56 |
|
models/refinement/refiner.py
CHANGED
|
@@ -65,7 +65,7 @@ class Refiner(nn.Module):
|
|
| 65 |
super(Refiner, self).__init__()
|
| 66 |
self.config = Config()
|
| 67 |
self.epoch = 1
|
| 68 |
-
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3)
|
| 69 |
self.bb = build_backbone(self.config.bb)
|
| 70 |
|
| 71 |
lateral_channels_in_collection = {
|
|
|
|
| 65 |
super(Refiner, self).__init__()
|
| 66 |
self.config = Config()
|
| 67 |
self.epoch = 1
|
| 68 |
+
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
| 69 |
self.bb = build_backbone(self.config.bb)
|
| 70 |
|
| 71 |
lateral_channels_in_collection = {
|