FROM nvidia/cuda:12.8.1-devel-ubuntu24.04 # Set working directory WORKDIR /app # Add build argument to conditionally skip llama.cpp build ARG SKIP_LLAMA_BUILD=false # Install system dependencies with noninteractive mode to avoid prompts RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \ build-essential cmake git curl wget lsof vim unzip sqlite3 \ python3-pip python3-venv python3-full python3-poetry pipx \ && apt-get clean \ && rm -rf /var/lib/apt/lists/* \ && ln -sf /usr/bin/python3 /usr/bin/python # Create a virtual environment to avoid PEP 668 restrictions RUN python -m venv /app/venv ENV PATH="/app/venv/bin:$PATH" ENV VIRTUAL_ENV="/app/venv" # Use the virtual environment's pip to install packages RUN pip install --upgrade pip \ && pip install poetry \ && poetry config virtualenvs.create false # Create directories RUN mkdir -p /app/dependencies /app/data/sqlite /app/data/chroma_db /app/logs /app/run /app/resources # Copy dependency files - Files that rarely change COPY dependencies/graphrag-1.2.1.dev27.tar.gz /app/dependencies/ COPY dependencies/llama.cpp.zip /app/dependencies/ # Copy GPU checker script COPY docker/app/check_gpu_support.sh /app/ COPY docker/app/check_torch_cuda.py /app/ RUN chmod +x /app/check_gpu_support.sh # Unpack llama.cpp and build with CUDA support (conditionally, based on SKIP_LLAMA_BUILD) RUN if [ "$SKIP_LLAMA_BUILD" = "false" ]; then \ echo "=====================================================================" && \ echo "STARTING LLAMA.CPP BUILD WITH CUDA SUPPORT - THIS WILL TAKE SOME TIME" && \ echo "=====================================================================" && \ LLAMA_LOCAL_ZIP="dependencies/llama.cpp.zip" && \ echo "Using local llama.cpp archive..." && \ unzip -q "$LLAMA_LOCAL_ZIP" && \ cd llama.cpp && \ mkdir -p build && \ cd build && \ echo "Starting CMake configuration with CUDA support..." && \ cmake -DGGML_CUDA=OFF -DLLAMA_CUBLAS=OFF \ -DCMAKE_BUILD_TYPE=Release \ -DBUILD_SHARED_LIBS=OFF \ -DLLAMA_NATIVE=ON \ .. && \ echo "Starting build process (this will take several minutes)..." && \ cmake --build . --config Release -j --verbose && \ echo "Build completed successfully" && \ chmod +x /app/llama.cpp/build/bin/llama-server /app/llama.cpp/build/bin/llama-cli && \ echo "====================================================================" && \ echo "CUDA BUILD COMPLETED SUCCESSFULLY! GPU ACCELERATION IS NOW AVAILABLE" && \ echo "===================================================================="; \ else \ echo "=====================================================================" && \ echo "SKIPPING LLAMA.CPP BUILD (SKIP_LLAMA_BUILD=$SKIP_LLAMA_BUILD)" && \ echo "Using existing llama.cpp build from Docker volume" && \ echo "=====================================================================" && \ LLAMA_LOCAL_ZIP="dependencies/llama.cpp.zip" && \ echo "Just unpacking llama.cpp archive (no build)..." && \ unzip -q "$LLAMA_LOCAL_ZIP" && \ cd llama.cpp && \ mkdir -p build; \ fi # Mark as GPU-optimized build for runtime reference RUN mkdir -p /app/data && \ echo "{ \"gpu_optimized\": true, \"optimized_on\": \"$(date -u +\"%Y-%m-%dT%H:%M:%SZ\")\" }" > /app/data/gpu_optimized.json && \ echo "Created GPU-optimized marker file" # Copy project configuration - Files that occasionally change COPY pyproject.toml README.md /app/ # Fix for potential package installation issues with Poetry RUN pip install --upgrade setuptools wheel RUN poetry install --no-interaction --no-root || poetry install --no-interaction --no-root --without dev RUN pip install --force-reinstall dependencies/graphrag-1.2.1.dev27.tar.gz # Copy source code - Files that frequently change COPY docker/ /app/docker/ COPY lpm_kernel/ /app/lpm_kernel/ # Check module import RUN python -c "import lpm_kernel; print('Module import check passed')" # Set environment variables ENV PYTHONUNBUFFERED=1 \ PYTHONPATH=/app \ BASE_DIR=/app/data \ LOCAL_LOG_DIR=/app/logs \ RUN_DIR=/app/run \ RESOURCES_DIR=/app/resources \ APP_ROOT=/app \ FLASK_APP=lpm_kernel.app \ LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH # Expose ports EXPOSE 8002 8080 # Set the startup command CMD ["bash", "-c", "echo 'Checking SQLite database...' && if [ ! -s /app/data/sqlite/lpm.db ]; then echo 'SQLite database not found or empty, initializing...' && mkdir -p /app/data/sqlite && sqlite3 /app/data/sqlite/lpm.db '.read /app/docker/sqlite/init.sql' && echo 'SQLite database initialized successfully' && echo 'Tables created:' && sqlite3 /app/data/sqlite/lpm.db '.tables'; else echo 'SQLite database already exists, skipping initialization'; fi && echo 'Checking ChromaDB...' && if [ ! -d /app/data/chroma_db/documents ] || [ ! -d /app/data/chroma_db/document_chunks ]; then echo 'ChromaDB collections not found, initializing...' && python /app/docker/app/init_chroma.py && echo 'ChromaDB initialized successfully'; else echo 'ChromaDB already exists, skipping initialization'; fi && echo 'Starting application at ' $(date) >> /app/logs/backend.log && cd /app && python -m flask run --host=0.0.0.0 --port=${LOCAL_APP_PORT:-8002} >> /app/logs/backend.log 2>&1"]