Spaces:
Runtime error
Runtime error
Harshad Bhandwaldar
commited on
Commit
·
e320838
1
Parent(s):
5c3505e
model added
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import pytube
|
4 |
import gradio as gr
|
5 |
|
@@ -10,19 +10,21 @@ model = nemo_asr.models.EncDecCTCModel.from_pretrained(
|
|
10 |
model_name="stt_en_quartznet15x5"
|
11 |
)
|
12 |
|
13 |
-
def speech_youtube(x):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
def speech_file(x):
|
|
|
20 |
text = model.transcribe([f"{x}"])
|
|
|
21 |
return text
|
22 |
|
23 |
-
def speech_record(x):
|
24 |
-
|
25 |
-
|
26 |
|
27 |
css = """
|
28 |
.gradio-container {
|
@@ -113,23 +115,23 @@ with gr.Blocks(css = css) as demo:
|
|
113 |
# Speech to Text Transcriptions!
|
114 |
This demo uses the OpenAI whisper model which is trained on a large dataset of diverse audio that can perform multilingual speech recognition. The computation time is dependent on the length of the audio.
|
115 |
""")
|
116 |
-
with gr.Tab("YouTube"):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
with gr.Tab("Audio File"):
|
121 |
with gr.Row().style(equal_height=True):
|
122 |
audio_input2 = gr.Audio(label="Audio File", type="filepath")
|
123 |
text_output2 = gr.Textbox(label="Transcription", show_label=False)
|
124 |
file_button = gr.Button("Transcribe")
|
125 |
-
with gr.Tab("Record"):
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
gr.HTML('''
|
131 |
<div class="footer">
|
132 |
-
<p
|
133 |
</p>
|
134 |
</div>
|
135 |
''')
|
|
|
1 |
import os
|
2 |
+
os.system("pip install nemo_toolkit['all']")
|
3 |
import pytube
|
4 |
import gradio as gr
|
5 |
|
|
|
10 |
model_name="stt_en_quartznet15x5"
|
11 |
)
|
12 |
|
13 |
+
# def speech_youtube(x):
|
14 |
+
# data = pytube.YouTube(x)
|
15 |
+
# audio = data.streams.get_audio_only()
|
16 |
+
# text = model.transcribe(audio.download())
|
17 |
+
# return text['text']
|
18 |
|
19 |
def speech_file(x):
|
20 |
+
print(x)
|
21 |
text = model.transcribe([f"{x}"])
|
22 |
+
print(text)
|
23 |
return text
|
24 |
|
25 |
+
# def speech_record(x):
|
26 |
+
# text = model.transcribe(x)
|
27 |
+
# return text['text']
|
28 |
|
29 |
css = """
|
30 |
.gradio-container {
|
|
|
115 |
# Speech to Text Transcriptions!
|
116 |
This demo uses the OpenAI whisper model which is trained on a large dataset of diverse audio that can perform multilingual speech recognition. The computation time is dependent on the length of the audio.
|
117 |
""")
|
118 |
+
# with gr.Tab("YouTube"):
|
119 |
+
# audio_input = gr.Textbox(label="YouTube Link", placeholder="paste the youtube link here")
|
120 |
+
# text_output = gr.Textbox(label="Transcription", show_label=False)
|
121 |
+
# youtube_button = gr.Button("Transcribe")
|
122 |
with gr.Tab("Audio File"):
|
123 |
with gr.Row().style(equal_height=True):
|
124 |
audio_input2 = gr.Audio(label="Audio File", type="filepath")
|
125 |
text_output2 = gr.Textbox(label="Transcription", show_label=False)
|
126 |
file_button = gr.Button("Transcribe")
|
127 |
+
# with gr.Tab("Record"):
|
128 |
+
# with gr.Row().style(equal_height=True):
|
129 |
+
# audio_input3 = gr.Audio(label="Input Audio", source="microphone", type="filepath")
|
130 |
+
# text_output3 = gr.Textbox(label="Transcription", show_label=False)
|
131 |
+
# rec_button = gr.Button("Transcribe")
|
132 |
gr.HTML('''
|
133 |
<div class="footer">
|
134 |
+
<p></a>
|
135 |
</p>
|
136 |
</div>
|
137 |
''')
|