Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,161 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
|
13 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
-
Fetches all questions, runs the
|
25 |
and displays the results.
|
26 |
"""
|
27 |
-
|
28 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,123 +167,70 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
-
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
except requests.exceptions.RequestException as e:
|
132 |
-
|
133 |
-
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
|
|
|
|
142 |
|
143 |
-
# ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
-
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
|
@@ -163,7 +239,6 @@ with gr.Blocks() as demo:
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -173,9 +248,8 @@ with gr.Blocks() as demo:
|
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -183,14 +257,11 @@ if __name__ == "__main__":
|
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
-
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from smolagents import OpenAIServerModel
|
7 |
+
from smolagents import CodeAgent, Tool, tool
|
8 |
+
from smolagents import DuckDuckGoSearchTool, VisitWebpageTool
|
9 |
+
from smolagents import PythonInterpreterTool # Import the built-in Python Interpreter Tool
|
10 |
|
|
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
14 |
+
# --- Tool Definitions ---
|
15 |
+
|
16 |
+
class GaiaFileTool(Tool):
|
17 |
+
"""
|
18 |
+
A smolagents.Tool subclass for downloading files from the GAIA API.
|
19 |
+
"""
|
20 |
+
name = "download_gaia_file"
|
21 |
+
description = "Downloads a file associated with a given GAIA task ID and returns its content. It takes 'task_id' as input and returns the file content as a string. Use this when a question refers to an external file."
|
22 |
+
inputs = {"task_id": {"type": "str", "description": "The task ID for which to download the file (e.g., '2345')."}}
|
23 |
+
output_type = str
|
24 |
+
|
25 |
+
def __init__(self, api_base_url=DEFAULT_API_URL):
|
26 |
+
super().__init__()
|
27 |
+
self.api_base_url = api_base_url
|
28 |
+
print(f"GaiaFileTool initialized with API base URL: {self.api_base_url}")
|
29 |
+
|
30 |
+
def forward(self, task_id: str) -> str:
|
31 |
+
"""
|
32 |
+
The core logic for the tool: downloads a file from the GAIA API.
|
33 |
+
This method is called by the agent when it uses this tool.
|
34 |
+
"""
|
35 |
+
file_url = f"{self.api_base_url}/files/{task_id}"
|
36 |
+
print(f"Attempting to download file from: {file_url}")
|
37 |
+
try:
|
38 |
+
response = requests.get(file_url)
|
39 |
+
response.raise_for_status()
|
40 |
+
print(f"Successfully downloaded file for task_id {task_id}")
|
41 |
+
return response.text
|
42 |
+
except requests.exceptions.RequestException as e:
|
43 |
+
print(f"Error downloading file for task_id {task_id}: {e}")
|
44 |
+
return f"Error downloading file: {e}"
|
45 |
+
|
46 |
+
# Removed the custom python_repl function as we are using the built-in tool
|
47 |
+
|
48 |
+
# --- Custom GAIA Agent Definition ---
|
49 |
+
class GaiaAgent(CodeAgent):
|
50 |
+
"""
|
51 |
+
A smolagents-based agent designed to tackle GAIA Level 1 benchmark questions.
|
52 |
+
It uses Gemini Flash for reasoning and integrates a Python Interpreter, a
|
53 |
+
GAIA file download tool, and web browsing/searching tools.
|
54 |
+
"""
|
55 |
def __init__(self):
|
56 |
+
print("GaiaAgent initializing...")
|
57 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
58 |
+
if not gemini_api_key:
|
59 |
+
print("WARNING: GEMINI_API_KEY environment variable not set.")
|
60 |
+
print("Please set GEMINI_API_KEY for Gemini Flash to work.")
|
61 |
+
|
62 |
+
self.llm_model = OpenAIServerModel(
|
63 |
+
model_id="gemini-2.0-flash",
|
64 |
+
api_base="https://generativelanguage.googleapis.com/v1beta/openai/",
|
65 |
+
api_key=gemini_api_key,
|
66 |
+
temperature=0.1,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Initialize GAIA file tool
|
70 |
+
gaia_file_tool_instance = GaiaFileTool()
|
71 |
+
|
72 |
+
# Initialize web searching and browsing tools
|
73 |
+
duckduckgo_search_tool = DuckDuckGoSearchTool()
|
74 |
+
visit_webpage_tool = VisitWebpageTool()
|
75 |
+
|
76 |
+
# Initialize the built-in Python Interpreter Tool
|
77 |
+
# By default, PythonInterpreterTool uses a local executor, which is generally safe
|
78 |
+
# for controlled environments like Hugging Face Spaces.
|
79 |
+
python_interpreter_tool = PythonInterpreterTool()
|
80 |
+
|
81 |
+
# Define the tools available to the agent
|
82 |
+
agent_tools = [
|
83 |
+
python_interpreter_tool, # Use the built-in Python interpreter tool
|
84 |
+
gaia_file_tool_instance,
|
85 |
+
duckduckgo_search_tool,
|
86 |
+
visit_webpage_tool
|
87 |
+
]
|
88 |
+
super().__init__(model=self.llm_model, tools=agent_tools)
|
89 |
+
print("GaiaAgent initialized successfully with Gemini Flash and built-in tools.")
|
90 |
+
|
91 |
def __call__(self, question: str) -> str:
|
92 |
+
"""
|
93 |
+
The main method for the agent to process a question and return an answer.
|
94 |
+
This will involve the agent's internal reasoning, tool use, and planning.
|
95 |
+
"""
|
96 |
+
print(f"\n--- Agent received question (first 100 chars): {question[:100]}...")
|
97 |
|
98 |
+
try:
|
99 |
+
prompt = (
|
100 |
+
f"You are an AI agent designed to solve GAIA benchmark questions. "
|
101 |
+
f"Your goal is to provide the exact answer as a string, without any additional text, "
|
102 |
+
f"explanation, or the phrase 'FINAL ANSWER:'. "
|
103 |
+
f"Break down the problem, use the available tools (python_interpreter, download_gaia_file, "
|
104 |
+
f"duckduckgo_search_tool, visit_webpage_tool) as needed, and think step-by-step. "
|
105 |
+
f"Use 'python_interpreter' for any calculations or code execution. "
|
106 |
+
f"Use 'duckduckgo_search_tool' to find information on the web. "
|
107 |
+
f"Use 'visit_webpage_tool' to read the content of a specific URL. "
|
108 |
+
f"When you have the final answer, output ONLY the answer string.\n\n"
|
109 |
+
f"Question: {question}"
|
110 |
+
)
|
111 |
+
|
112 |
+
result = self.run(query=prompt)
|
113 |
+
|
114 |
+
final_answer = self._extract_exact_answer(result)
|
115 |
+
print(f"--- Agent returning final answer (first 100 chars): {final_answer[:100]}...")
|
116 |
+
return final_answer
|
117 |
+
except Exception as e:
|
118 |
+
print(f"--- Error during agent execution: {e}")
|
119 |
+
return "Agent encountered an error and could not provide an answer."
|
120 |
+
|
121 |
+
def _extract_exact_answer(self, raw_output: str) -> str:
|
122 |
+
"""
|
123 |
+
Extracts and formats the exact answer from the agent's raw output.
|
124 |
+
Ensures no "FINAL ANSWER" text is included and handles any
|
125 |
+
extraneous formatting. This function is crucial for GAIA's exact match scoring.
|
126 |
+
"""
|
127 |
+
cleaned_output = raw_output.replace("FINAL ANSWER:", "").strip()
|
128 |
+
cleaned_output = cleaned_output.replace("Answer:", "").strip()
|
129 |
+
cleaned_output = cleaned_output.replace("The answer is:", "").strip()
|
130 |
+
cleaned_output = cleaned_output.replace("```python", "").replace("```", "").strip()
|
131 |
+
|
132 |
+
lines = cleaned_output.split('\n')
|
133 |
+
if lines:
|
134 |
+
potential_answer = lines[-1].strip()
|
135 |
+
if len(potential_answer) < 5 or "tool_code" in potential_answer.lower():
|
136 |
+
for line in reversed(lines[:-1]):
|
137 |
+
if line.strip() and "tool_code" not in line.lower():
|
138 |
+
potential_answer = line.strip()
|
139 |
+
break
|
140 |
+
cleaned_output = potential_answer
|
141 |
+
|
142 |
+
if cleaned_output.startswith('"') and cleaned_output.endswith('"'):
|
143 |
+
cleaned_output = cleaned_output[1:-1]
|
144 |
+
if cleaned_output.startswith("'") and cleaned_output.endswith("'"):
|
145 |
+
cleaned_output = cleaned_output[1:-1]
|
146 |
+
|
147 |
+
return cleaned_output.strip()
|
148 |
+
|
149 |
+
|
150 |
+
# --- Gradio Application Logic (mostly unchanged from template) ---
|
151 |
+
|
152 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
153 |
"""
|
154 |
+
Fetches all questions, runs the GaiaAgent on them, submits all answers,
|
155 |
and displays the results.
|
156 |
"""
|
157 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
158 |
|
159 |
if profile:
|
160 |
+
username = f"{profile.username}"
|
161 |
print(f"User logged in: {username}")
|
162 |
else:
|
163 |
print("User not logged in.")
|
|
|
167 |
questions_url = f"{api_url}/questions"
|
168 |
submit_url = f"{api_url}/submit"
|
169 |
|
|
|
170 |
try:
|
171 |
+
agent = GaiaAgent()
|
172 |
except Exception as e:
|
|
|
173 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
174 |
|
|
|
|
|
175 |
try:
|
176 |
+
print(f"Fetching questions from: {questions_url}")
|
177 |
+
questions_response = requests.get(questions_url)
|
178 |
+
questions_response.raise_for_status()
|
179 |
+
questions = questions_response.json()
|
180 |
+
print(f"Fetched {len(questions)} questions.")
|
|
|
|
|
181 |
except requests.exceptions.RequestException as e:
|
|
|
182 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
all_answers = []
|
185 |
+
results_data = []
|
186 |
+
|
187 |
+
for i, q_data in enumerate(questions):
|
188 |
+
task_id = q_data.get("task_id", f"unknown_{i}")
|
189 |
+
question_text = q_data.get("question", "No question text found.")
|
190 |
+
print(f"\n--- Processing Task ID: {task_id} ---")
|
191 |
+
print(f"Question: {question_text[:100]}...")
|
192 |
|
193 |
+
agent_answer = agent(question_text)
|
194 |
+
all_answers.append({"task_id": task_id, "answer": agent_answer})
|
195 |
+
results_data.append({
|
196 |
+
"Task ID": task_id,
|
197 |
+
"Question": question_text,
|
198 |
+
"Agent Answer": agent_answer
|
199 |
+
})
|
200 |
+
print(f"--- Finished processing Task ID: {task_id} ---")
|
201 |
|
|
|
|
|
202 |
try:
|
203 |
+
print(f"\nSubmitting {len(all_answers)} answers to: {submit_url}")
|
204 |
+
submission_payload = {
|
205 |
+
"username": username,
|
206 |
+
"code_link": f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_execution",
|
207 |
+
"answers": all_answers
|
208 |
+
}
|
209 |
+
submit_response = requests.post(submit_url, json=submission_payload)
|
210 |
+
submit_response.raise_for_status()
|
211 |
+
submission_result = submit_response.json()
|
212 |
+
print(f"Submission successful: {submission_result}")
|
213 |
+
status_message = f"Submission successful!\nScore: {submission_result.get('score', 'N/A')}\nDetails: {submission_result.get('message', 'No message')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
except requests.exceptions.RequestException as e:
|
215 |
+
print(f"Error submitting answers: {e}")
|
216 |
+
status_message = f"Error submitting answers: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
results_df = pd.DataFrame(results_data)
|
219 |
+
return status_message, results_df
|
220 |
|
221 |
+
# --- Gradio UI ---
|
222 |
with gr.Blocks() as demo:
|
|
|
223 |
gr.Markdown(
|
224 |
"""
|
225 |
+
# GAIA Level 1 Agent Evaluation
|
226 |
+
This application allows you to run your `smolagents`-based agent on the GAIA Level 1 benchmark
|
227 |
+
and submit your answers to the leaderboard.
|
228 |
|
229 |
+
**Important:**
|
230 |
+
1. **Login to Hugging Face** using the button below to submit your score.
|
231 |
+
2. **Set `GEMINI_API_KEY`**: Ensure your `GEMINI_API_KEY` is set as a Space Secret
|
232 |
+
in Hugging Face Spaces (or as an environment variable if running locally)
|
233 |
+
for the Gemini Flash model to function.
|
|
|
|
|
|
|
234 |
"""
|
235 |
)
|
236 |
|
|
|
239 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
240 |
|
241 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
242 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
243 |
|
244 |
run_button.click(
|
|
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
251 |
space_host_startup = os.getenv("SPACE_HOST")
|
252 |
+
space_id_startup = os.getenv("SPACE_ID")
|
253 |
|
254 |
if space_host_startup:
|
255 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
257 |
else:
|
258 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
259 |
|
260 |
+
if space_id_startup:
|
261 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
262 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
263 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
264 |
else:
|
265 |
+
print("ℹ️ SPACE_ID environment variable not found. Code link might be incorrect for submission.")
|
|
|
|
|
266 |
|
267 |
+
demo.launch()
|
|