File size: 7,275 Bytes
6bf224b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from flask import Flask, request, jsonify
from flask_cors import CORS
import os
from transformers import pipeline
import numpy as np
import torch
import re
from werkzeug.utils import secure_filename
import uuid
import platform

# Set Transformers Cache Directory
if platform.system() == "Windows":
    print("Windows detected. Assigning cache directory to Transformers in AppData\\Local.")
    transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
else:
    print("Non-Windows system detected. Assigning cache directory to /tmp/transformers_cache.")
    transformers_cache_directory = '/tmp/transformers_cache'

# Ensure the directory exists
if not os.path.exists(transformers_cache_directory):
    try:
        os.makedirs(transformers_cache_directory, exist_ok=True)
        print(f"Directory '{transformers_cache_directory}' created successfully.")
    except OSError as e:
        print(f"Error creating directory '{transformers_cache_directory}': {e}")
else:
    print(f"Directory '{transformers_cache_directory}' already exists.")

# Set the TRANSFORMERS_CACHE environment variable
os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
print(f"Environment variable TRANSFORMERS_CACHE set to '{transformers_cache_directory}'.")


class Config:
    UPLOAD_FOLDER = os.path.join(os.path.dirname(__file__), '/tmp/uploads')  # Correct path
    MAX_CONTENT_LENGTH = 16 * 1024 * 1024  # 16MB max file size
    CORS_HEADERS = 'Content-Type'



class DialogueSentimentAnalyzer:
    def __init__(self, model_name: str = "microsoft/DialogRPT-updown"):
        self.device = 0 if torch.cuda.is_available() else -1
        self.dialogue_model = pipeline(
            'text-classification',
            model="microsoft/DialogRPT-updown",
            device=self.device
        )
        self.sentiment_model = pipeline(
            'sentiment-analysis',
            model="distilbert-base-uncased-finetuned-sst-2-english",
            device=self.device
        )
        self.max_length = 512

    def parse_dialogue(self, text: str):
        lines = text.strip().split('\n')
        dialogue = []
        current_speaker = None
        current_text = []

        for line in lines:
            line = line.strip()
            if not line:
                continue

            speaker_match = re.match(r'^([^:]+):', line)
            if speaker_match:
                if current_speaker and current_text:
                    dialogue.append({'speaker': current_speaker, 'text': ' '.join(current_text)})
                current_speaker = speaker_match.group(1)
                current_text = [line[len(current_speaker) + 1:].strip()]
            else:
                if current_speaker:
                    current_text.append(line.strip())

        if current_speaker and current_text:
            dialogue.append({'speaker': current_speaker, 'text': ' '.join(current_text)})

        return dialogue

    def analyze_utterance(self, utterance):
        text = utterance['text']
        dialogue_score = self.dialogue_model(text)[0]
        sentiment = self.sentiment_model(text)[0]
        positive_phrases = ['thank you', 'thanks', 'appreciate', 'great', 'perfect', 'looking forward', 'flexible', 'competitive']
        negative_phrases = ['concerned', 'worry', 'issue', 'problem', 'difficult', 'unfortunately', 'sorry']
        text_lower = text.lower()
        positive_count = sum(1 for phrase in positive_phrases if phrase in text_lower)
        negative_count = sum(1 for phrase in negative_phrases if phrase in text_lower)
        sentiment_score = float(sentiment['score'])
        if sentiment['label'] == 'NEGATIVE':
            sentiment_score = 1 - sentiment_score
        final_score = sentiment_score
        if positive_count > negative_count:
            final_score = min(1.0, final_score + 0.1 * (positive_count - negative_count))
        elif negative_count > positive_count:
            final_score = max(0.0, final_score - 0.1 * (negative_count - positive_count))

        return {
            'speaker': utterance['speaker'],
            'text': text,
            'sentiment_score': final_score,
            'engagement_score': float(dialogue_score['score']),
            'positive_phrases': positive_count,
            'negative_phrases': negative_count
        }

    def analyze_dialogue(self, text: str):
        dialogue = self.parse_dialogue(text)
        utterance_results = [self.analyze_utterance(utterance) for utterance in dialogue]
        overall_sentiment = np.mean([r['sentiment_score'] for r in utterance_results])
        overall_engagement = np.mean([r['engagement_score'] for r in utterance_results])
        sentiment_variance = np.std([r['sentiment_score'] for r in utterance_results])
        confidence = max(0.0, 1.0 - sentiment_variance)
        speaker_sentiments = {}
        for result in utterance_results:
            if result['speaker'] not in speaker_sentiments:
                speaker_sentiments[result['speaker']] = []
            speaker_sentiments[result['speaker']].append(result['sentiment_score'])
        speaker_averages = {speaker: np.mean(scores) for speaker, scores in speaker_sentiments.items()}
        return [{'label': 'Overall Sentiment', 'score': float(overall_sentiment)},
                {'label': 'Confidence', 'score': float(confidence)},
                {'label': 'Engagement', 'score': float(overall_engagement)}] + [
                   {'label': f'{speaker} Sentiment', 'score': float(score)} for speaker, score in speaker_averages.items()
               ]


def save_uploaded_file(content, upload_folder):
    filename = f"{uuid.uuid4().hex}.txt"
    file_path = os.path.join(upload_folder, secure_filename(filename))
    with open(file_path, 'w', encoding='utf-8') as f:
        f.write(content)
    return file_path


def analyze_sentiment(file_path: str):
    try:
        analyzer = DialogueSentimentAnalyzer()
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
        return analyzer.analyze_dialogue(text)
    except Exception as e:
        print(f"Error in sentiment analysis: {str(e)}")
        return [{'label': 'Error', 'score': 0.5}]



def create_app():
    app = Flask(__name__)
    app.config.from_object(Config)

    # Ensure the uploads directory exists
    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

    @app.route('/upload', methods=['POST'])
    def upload_transcript():
        try:
            transcript = request.form.get('transcript')
            if not transcript:
                return jsonify({'error': 'No transcript received'}), 400

            # Save the transcript in the current folder
            file_path = os.path.join(os.getcwd(), 'transcript.txt')
            with open(file_path, 'w') as file:
                file.write(transcript)

            # Analyze sentiment
            sentiment_result = analyze_sentiment(file_path)

            # Remove the temporary file
            os.remove(file_path)

            return jsonify({'sentiment': sentiment_result}), 200
        except Exception as e:
            return jsonify({'error': str(e)}), 500

    return app




if __name__ == '__main__':
    app = create_app()
    app.run(host="0.0.0.0", port=5000)