Spaces:
Running
Running
File size: 7,275 Bytes
6bf224b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from flask import Flask, request, jsonify
from flask_cors import CORS
import os
from transformers import pipeline
import numpy as np
import torch
import re
from werkzeug.utils import secure_filename
import uuid
import platform
# Set Transformers Cache Directory
if platform.system() == "Windows":
print("Windows detected. Assigning cache directory to Transformers in AppData\\Local.")
transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
else:
print("Non-Windows system detected. Assigning cache directory to /tmp/transformers_cache.")
transformers_cache_directory = '/tmp/transformers_cache'
# Ensure the directory exists
if not os.path.exists(transformers_cache_directory):
try:
os.makedirs(transformers_cache_directory, exist_ok=True)
print(f"Directory '{transformers_cache_directory}' created successfully.")
except OSError as e:
print(f"Error creating directory '{transformers_cache_directory}': {e}")
else:
print(f"Directory '{transformers_cache_directory}' already exists.")
# Set the TRANSFORMERS_CACHE environment variable
os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
print(f"Environment variable TRANSFORMERS_CACHE set to '{transformers_cache_directory}'.")
class Config:
UPLOAD_FOLDER = os.path.join(os.path.dirname(__file__), '/tmp/uploads') # Correct path
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16MB max file size
CORS_HEADERS = 'Content-Type'
class DialogueSentimentAnalyzer:
def __init__(self, model_name: str = "microsoft/DialogRPT-updown"):
self.device = 0 if torch.cuda.is_available() else -1
self.dialogue_model = pipeline(
'text-classification',
model="microsoft/DialogRPT-updown",
device=self.device
)
self.sentiment_model = pipeline(
'sentiment-analysis',
model="distilbert-base-uncased-finetuned-sst-2-english",
device=self.device
)
self.max_length = 512
def parse_dialogue(self, text: str):
lines = text.strip().split('\n')
dialogue = []
current_speaker = None
current_text = []
for line in lines:
line = line.strip()
if not line:
continue
speaker_match = re.match(r'^([^:]+):', line)
if speaker_match:
if current_speaker and current_text:
dialogue.append({'speaker': current_speaker, 'text': ' '.join(current_text)})
current_speaker = speaker_match.group(1)
current_text = [line[len(current_speaker) + 1:].strip()]
else:
if current_speaker:
current_text.append(line.strip())
if current_speaker and current_text:
dialogue.append({'speaker': current_speaker, 'text': ' '.join(current_text)})
return dialogue
def analyze_utterance(self, utterance):
text = utterance['text']
dialogue_score = self.dialogue_model(text)[0]
sentiment = self.sentiment_model(text)[0]
positive_phrases = ['thank you', 'thanks', 'appreciate', 'great', 'perfect', 'looking forward', 'flexible', 'competitive']
negative_phrases = ['concerned', 'worry', 'issue', 'problem', 'difficult', 'unfortunately', 'sorry']
text_lower = text.lower()
positive_count = sum(1 for phrase in positive_phrases if phrase in text_lower)
negative_count = sum(1 for phrase in negative_phrases if phrase in text_lower)
sentiment_score = float(sentiment['score'])
if sentiment['label'] == 'NEGATIVE':
sentiment_score = 1 - sentiment_score
final_score = sentiment_score
if positive_count > negative_count:
final_score = min(1.0, final_score + 0.1 * (positive_count - negative_count))
elif negative_count > positive_count:
final_score = max(0.0, final_score - 0.1 * (negative_count - positive_count))
return {
'speaker': utterance['speaker'],
'text': text,
'sentiment_score': final_score,
'engagement_score': float(dialogue_score['score']),
'positive_phrases': positive_count,
'negative_phrases': negative_count
}
def analyze_dialogue(self, text: str):
dialogue = self.parse_dialogue(text)
utterance_results = [self.analyze_utterance(utterance) for utterance in dialogue]
overall_sentiment = np.mean([r['sentiment_score'] for r in utterance_results])
overall_engagement = np.mean([r['engagement_score'] for r in utterance_results])
sentiment_variance = np.std([r['sentiment_score'] for r in utterance_results])
confidence = max(0.0, 1.0 - sentiment_variance)
speaker_sentiments = {}
for result in utterance_results:
if result['speaker'] not in speaker_sentiments:
speaker_sentiments[result['speaker']] = []
speaker_sentiments[result['speaker']].append(result['sentiment_score'])
speaker_averages = {speaker: np.mean(scores) for speaker, scores in speaker_sentiments.items()}
return [{'label': 'Overall Sentiment', 'score': float(overall_sentiment)},
{'label': 'Confidence', 'score': float(confidence)},
{'label': 'Engagement', 'score': float(overall_engagement)}] + [
{'label': f'{speaker} Sentiment', 'score': float(score)} for speaker, score in speaker_averages.items()
]
def save_uploaded_file(content, upload_folder):
filename = f"{uuid.uuid4().hex}.txt"
file_path = os.path.join(upload_folder, secure_filename(filename))
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
return file_path
def analyze_sentiment(file_path: str):
try:
analyzer = DialogueSentimentAnalyzer()
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
return analyzer.analyze_dialogue(text)
except Exception as e:
print(f"Error in sentiment analysis: {str(e)}")
return [{'label': 'Error', 'score': 0.5}]
def create_app():
app = Flask(__name__)
app.config.from_object(Config)
# Ensure the uploads directory exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
@app.route('/upload', methods=['POST'])
def upload_transcript():
try:
transcript = request.form.get('transcript')
if not transcript:
return jsonify({'error': 'No transcript received'}), 400
# Save the transcript in the current folder
file_path = os.path.join(os.getcwd(), 'transcript.txt')
with open(file_path, 'w') as file:
file.write(transcript)
# Analyze sentiment
sentiment_result = analyze_sentiment(file_path)
# Remove the temporary file
os.remove(file_path)
return jsonify({'sentiment': sentiment_result}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
return app
if __name__ == '__main__':
app = create_app()
app.run(host="0.0.0.0", port=5000) |