Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py (Streamlit frontend)
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import requests
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
import io
|
| 6 |
+
|
| 7 |
+
API_URL = "http://localhost:5000/upload"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def main():
|
| 11 |
+
st.title("Sentiment Analysis on Call Transcripts")
|
| 12 |
+
|
| 13 |
+
uploaded_file = st.file_uploader("Upload your call transcript", type=["txt", "pdf"])
|
| 14 |
+
|
| 15 |
+
if uploaded_file:
|
| 16 |
+
try:
|
| 17 |
+
# Process the uploaded file
|
| 18 |
+
if uploaded_file.name.endswith(".txt"):
|
| 19 |
+
transcript = uploaded_file.read().decode('utf-8')
|
| 20 |
+
elif uploaded_file.name.endswith(".pdf"):
|
| 21 |
+
reader = PdfReader(uploaded_file)
|
| 22 |
+
transcript = ""
|
| 23 |
+
for page in reader.pages:
|
| 24 |
+
transcript += page.extract_text()
|
| 25 |
+
|
| 26 |
+
# Display the extracted text
|
| 27 |
+
st.text_area("Uploaded Transcript", transcript, height=300)
|
| 28 |
+
|
| 29 |
+
# Send the transcript for sentiment analysis
|
| 30 |
+
if st.button("Analyze Sentiment"):
|
| 31 |
+
with st.spinner("Analyzing sentiment..."):
|
| 32 |
+
try:
|
| 33 |
+
# Send the transcript directly as form data
|
| 34 |
+
response = requests.post(
|
| 35 |
+
API_URL,
|
| 36 |
+
data={'transcript': transcript},
|
| 37 |
+
timeout=10
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
if response.status_code == 200:
|
| 41 |
+
sentiment = response.json().get('sentiment', [])
|
| 42 |
+
st.success("Analysis complete!")
|
| 43 |
+
|
| 44 |
+
# Create a nice display for results
|
| 45 |
+
st.subheader("Sentiment Results")
|
| 46 |
+
for result in sentiment:
|
| 47 |
+
score = result['score']
|
| 48 |
+
label = result['label']
|
| 49 |
+
|
| 50 |
+
# Create a progress bar for visualization
|
| 51 |
+
st.write(f"{label}:")
|
| 52 |
+
st.progress(score)
|
| 53 |
+
st.write(f"Score: {score:.2f}")
|
| 54 |
+
|
| 55 |
+
# Add interpretation
|
| 56 |
+
if label == 'Overall Sentiment':
|
| 57 |
+
if score > 0.6:
|
| 58 |
+
st.info("π This text is predominantly positive")
|
| 59 |
+
elif score < 0.4:
|
| 60 |
+
st.info("π This text is predominantly negative")
|
| 61 |
+
else:
|
| 62 |
+
st.info("π This text is relatively neutral")
|
| 63 |
+
elif label == 'Confidence':
|
| 64 |
+
if score > 0.8:
|
| 65 |
+
st.info("β¨ High confidence in this analysis")
|
| 66 |
+
elif score < 0.5:
|
| 67 |
+
st.warning("β οΈ Take this analysis with a grain of salt")
|
| 68 |
+
else:
|
| 69 |
+
st.error(f"Error: {response.json().get('error', 'Unknown error')}")
|
| 70 |
+
|
| 71 |
+
except requests.exceptions.ConnectionError:
|
| 72 |
+
st.error("Could not connect to the server. Please make sure the Flask backend is running.")
|
| 73 |
+
except requests.exceptions.Timeout:
|
| 74 |
+
st.error("Request timed out. Please try again.")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
st.error(f"An error occurred: {str(e)}")
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
st.error(f"Error processing file: {str(e)}")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
main()
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|