|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
SAMPLERS = { |
|
"DDIM": ("DDIMScheduler", {}), |
|
"DDIM trailing": ("DDIMScheduler", {"timestep_spacing": "trailing"}), |
|
"DDPM": ("DDPMScheduler", {}), |
|
"DEIS": ("DEISMultistepScheduler", {}), |
|
"Heun": ("HeunDiscreteScheduler", {}), |
|
"Heun Karras": ("HeunDiscreteScheduler", {"use_karras_sigmas": True}), |
|
"Euler": ("EulerDiscreteScheduler", {}), |
|
"Euler trailing": ("EulerDiscreteScheduler", {"timestep_spacing": "trailing", "prediction_type": "sample"}), |
|
"Euler Ancestral": ("EulerAncestralDiscreteScheduler", {}), |
|
"Euler Ancestral trailing": ("EulerAncestralDiscreteScheduler", {"timestep_spacing": "trailing"}), |
|
"DPM++ 1S": ("DPMSolverMultistepScheduler", {"solver_order": 1}), |
|
"DPM++ 1S Karras": ("DPMSolverMultistepScheduler", {"solver_order": 1, "use_karras_sigmas": True}), |
|
"DPM++ 2S": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": False}), |
|
"DPM++ 2S Karras": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": True}), |
|
"DPM++ 2M": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False}), |
|
"DPM++ 2M Karras": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": True}), |
|
"DPM++ 2M SDE": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}), |
|
"DPM++ 2M SDE Karras": ( |
|
"DPMSolverMultistepScheduler", |
|
{"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}, |
|
), |
|
"DPM++ 3M": ("DPMSolverMultistepScheduler", {"solver_order": 3}), |
|
"DPM++ 3M Karras": ("DPMSolverMultistepScheduler", {"solver_order": 3, "use_karras_sigmas": True}), |
|
"DPM++ SDE": ("DPMSolverSDEScheduler", {"use_karras_sigmas": False}), |
|
"DPM++ SDE Karras": ("DPMSolverSDEScheduler", {"use_karras_sigmas": True}), |
|
"DPM2": ("KDPM2DiscreteScheduler", {}), |
|
"DPM2 Karras": ("KDPM2DiscreteScheduler", {"use_karras_sigmas": True}), |
|
"DPM2 Ancestral": ("KDPM2AncestralDiscreteScheduler", {}), |
|
"DPM2 Ancestral Karras": ("KDPM2AncestralDiscreteScheduler", {"use_karras_sigmas": True}), |
|
"LMS": ("LMSDiscreteScheduler", {}), |
|
"LMS Karras": ("LMSDiscreteScheduler", {"use_karras_sigmas": True}), |
|
"UniPC": ("UniPCMultistepScheduler", {}), |
|
"UniPC Karras": ("UniPCMultistepScheduler", {"use_karras_sigmas": True}), |
|
"PNDM": ("PNDMScheduler", {}), |
|
"Euler EDM": ("EDMEulerScheduler", {}), |
|
"Euler EDM Karras": ("EDMEulerScheduler", {"use_karras_sigmas": True}), |
|
"DPM++ 2M EDM": ( |
|
"EDMDPMSolverMultistepScheduler", |
|
{"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}, |
|
), |
|
"DPM++ 2M EDM Karras": ( |
|
"EDMDPMSolverMultistepScheduler", |
|
{ |
|
"use_karras_sigmas": True, |
|
"solver_order": 2, |
|
"solver_type": "midpoint", |
|
"final_sigmas_type": "zero", |
|
"algorithm_type": "dpmsolver++", |
|
}, |
|
), |
|
"DPM++ 2M Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True}), |
|
"DPM++ 2M Ef": ("DPMSolverMultistepScheduler", {"euler_at_final": True}), |
|
"DPM++ 2M SDE Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}), |
|
"DPM++ 2M SDE Ef": ("DPMSolverMultistepScheduler", {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}), |
|
"LCM": ("LCMScheduler", {}), |
|
"LCM trailing": ("LCMScheduler", {"timestep_spacing": "trailing"}), |
|
"TCD": ("TCDScheduler", {}), |
|
"TCD trailing": ("TCDScheduler", {"timestep_spacing": "trailing"}), |
|
} |
|
|
|
def select_scheduler(pipe, selected_sampler): |
|
import diffusers |
|
|
|
scheduler_class_name, add_kwargs = SAMPLERS[selected_sampler] |
|
config = pipe.scheduler.config |
|
scheduler = getattr(diffusers, scheduler_class_name) |
|
if selected_sampler in ("LCM", "LCM trailing"): |
|
config = { |
|
x: config[x] for x in config if x not in ("skip_prk_steps", "interpolation_type", "use_karras_sigmas") |
|
} |
|
elif selected_sampler in ("TCD", "TCD trailing"): |
|
config = {x: config[x] for x in config if x not in ("skip_prk_steps")} |
|
|
|
return scheduler.from_config(config, **add_kwargs) |
|
|
|
|
|
|
|
def progressive_upscale(input_image, target_resolution, steps=3): |
|
""" |
|
Progressively upscales an image to the target resolution in multiple steps. |
|
|
|
Args: |
|
input_image (PIL.Image.Image): The input image to be upscaled. |
|
target_resolution (int): The target resolution (width or height) in pixels. |
|
steps (int, optional): The number of upscaling steps. Defaults to 3. |
|
|
|
Returns: |
|
PIL.Image.Image: The upscaled image at the target resolution. |
|
""" |
|
current_image = input_image.convert("RGB") |
|
current_size = max(current_image.size) |
|
|
|
|
|
for _ in range(steps): |
|
if current_size >= target_resolution: |
|
break |
|
scale_factor = min(2, target_resolution / current_size) |
|
new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor)) |
|
current_image = current_image.resize(new_size, Image.LANCZOS) |
|
current_size = max(current_image.size) |
|
|
|
|
|
if current_size != target_resolution: |
|
aspect_ratio = current_image.width / current_image.height |
|
if current_image.width > current_image.height: |
|
new_size = (target_resolution, int(target_resolution / aspect_ratio)) |
|
else: |
|
new_size = (int(target_resolution * aspect_ratio), target_resolution) |
|
current_image = current_image.resize(new_size, Image.LANCZOS) |
|
|
|
return current_image |
|
|
|
|
|
|
|
def create_hdr_effect(original_image, hdr): |
|
""" |
|
Applies an HDR (High Dynamic Range) effect to an image based on the specified intensity. |
|
|
|
Args: |
|
original_image (PIL.Image.Image): The original image to which the HDR effect will be applied. |
|
hdr (float): The intensity of the HDR effect, ranging from 0 (no effect) to 1 (maximum effect). |
|
|
|
Returns: |
|
PIL.Image.Image: The image with the HDR effect applied. |
|
""" |
|
if hdr == 0: |
|
return original_image |
|
|
|
|
|
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
factors = [ |
|
1.0 - 0.9 * hdr, |
|
1.0 - 0.7 * hdr, |
|
1.0 - 0.45 * hdr, |
|
1.0 - 0.25 * hdr, |
|
1.0, |
|
1.0 + 0.2 * hdr, |
|
1.0 + 0.4 * hdr, |
|
1.0 + 0.6 * hdr, |
|
1.0 + 0.8 * hdr, |
|
] |
|
|
|
|
|
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors] |
|
|
|
|
|
merge_mertens = cv2.createMergeMertens() |
|
hdr_image = merge_mertens.process(images) |
|
|
|
|
|
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype("uint8") |
|
|
|
torch_gc() |
|
|
|
|
|
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
def torch_gc(): |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
with torch.cuda.device("cuda"): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
def quantize_8bit(unet): |
|
if unet is None: |
|
return |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
dtype = unet.dtype |
|
unet.to(torch.float8_e4m3fn) |
|
for module in unet.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.to(dtype) |
|
|
|
if hasattr(unet, "encoder_hid_proj"): |
|
if unet.encoder_hid_proj is not None: |
|
for module in unet.encoder_hid_proj.modules(): |
|
module.to(dtype) |
|
torch_gc() |
|
|