Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,24 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing import image
|
|
|
5 |
from PIL import Image
|
6 |
|
7 |
# Load the trained model
|
8 |
MODEL_PATH = "setosys_dogs_model.h5"
|
9 |
model = tf.keras.models.load_model(MODEL_PATH)
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
12 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
13 |
"""Preprocess the image to match the model's input requirements."""
|
14 |
img = img.resize((224, 224)) # Resize image to model input size
|
15 |
-
img_array =
|
|
|
16 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
17 |
-
img_array /= 255.0 # Normalize pixel values
|
18 |
return img_array
|
19 |
|
20 |
# Prediction function
|
@@ -24,15 +29,9 @@ def predict_dog_breed(img: Image.Image) -> dict:
|
|
24 |
predictions = model.predict(img_array)
|
25 |
class_idx = np.argmax(predictions) # Index of the highest prediction probability
|
26 |
confidence = float(np.max(predictions)) # Confidence score
|
27 |
-
|
28 |
-
# Get class labels from the model
|
29 |
-
class_labels = model.classes_ if hasattr(model, 'classes_') else None
|
30 |
|
31 |
-
#
|
32 |
-
if class_labels
|
33 |
-
predicted_breed = class_labels[class_idx]
|
34 |
-
else:
|
35 |
-
predicted_breed = "Unknown"
|
36 |
|
37 |
return {predicted_breed: confidence}
|
38 |
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing import image
|
5 |
+
from tensorflow.keras.applications.efficientnet_v2 import EfficientNetV2S, preprocess_input
|
6 |
from PIL import Image
|
7 |
|
8 |
# Load the trained model
|
9 |
MODEL_PATH = "setosys_dogs_model.h5"
|
10 |
model = tf.keras.models.load_model(MODEL_PATH)
|
11 |
|
12 |
+
# Ideally, you would have access to train_generator's class_indices, or you can load them manually
|
13 |
+
# Example if you manually define class labels
|
14 |
+
class_labels = ["Labrador Retriever", "German Shepherd", "Golden Retriever", "Bulldog", "Poodle"] # Adjust with actual labels
|
15 |
+
|
16 |
+
# Image preprocessing function using EfficientNetV2S
|
17 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
18 |
"""Preprocess the image to match the model's input requirements."""
|
19 |
img = img.resize((224, 224)) # Resize image to model input size
|
20 |
+
img_array = np.array(img)
|
21 |
+
img_array = EfficientNetV2S.preprocess_input(img_array) # EfficientNetV2 preprocessing
|
22 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
|
|
23 |
return img_array
|
24 |
|
25 |
# Prediction function
|
|
|
29 |
predictions = model.predict(img_array)
|
30 |
class_idx = np.argmax(predictions) # Index of the highest prediction probability
|
31 |
confidence = float(np.max(predictions)) # Confidence score
|
|
|
|
|
|
|
32 |
|
33 |
+
# Get predicted breed and its confidence score
|
34 |
+
predicted_breed = class_labels[class_idx] if class_idx < len(class_labels) else "Unknown"
|
|
|
|
|
|
|
35 |
|
36 |
return {predicted_breed: confidence}
|
37 |
|