hb-setosys commited on
Commit
f72a81e
·
verified ·
1 Parent(s): 56ff650

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -9,16 +9,15 @@ from PIL import Image
9
  MODEL_PATH = "setosys_dogs_model.h5"
10
  model = tf.keras.models.load_model(MODEL_PATH)
11
 
12
- # Ideally, you would have access to train_generator's class_indices, or you can load them manually
13
- # Example if you manually define class labels
14
- class_labels = ["Labrador Retriever", "German Shepherd", "Golden Retriever", "Bulldog", "Poodle"] # Adjust with actual labels
15
 
16
  # Image preprocessing function using EfficientNetV2S
17
  def preprocess_image(img: Image.Image) -> np.ndarray:
18
  """Preprocess the image to match the model's input requirements."""
19
  img = img.resize((224, 224)) # Resize image to model input size
20
  img_array = np.array(img)
21
- img_array = preprocess_input(img_array) # EfficientNetV2 preprocessing (correct usage)
22
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
23
  return img_array
24
 
@@ -27,6 +26,10 @@ def predict_dog_breed(img: Image.Image) -> dict:
27
  """Predict the breed of the dog in the uploaded image."""
28
  img_array = preprocess_image(img)
29
  predictions = model.predict(img_array)
 
 
 
 
30
  class_idx = np.argmax(predictions) # Index of the highest prediction probability
31
  confidence = float(np.max(predictions)) # Confidence score
32
 
 
9
  MODEL_PATH = "setosys_dogs_model.h5"
10
  model = tf.keras.models.load_model(MODEL_PATH)
11
 
12
+ # Get class labels from the model (assuming the model has a 'class_indices' attribute)
13
+ class_labels = list(model.class_indices.keys()) # Fetch class labels from the model
 
14
 
15
  # Image preprocessing function using EfficientNetV2S
16
  def preprocess_image(img: Image.Image) -> np.ndarray:
17
  """Preprocess the image to match the model's input requirements."""
18
  img = img.resize((224, 224)) # Resize image to model input size
19
  img_array = np.array(img)
20
+ img_array = preprocess_input(img_array) # EfficientNetV2 preprocessing
21
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
22
  return img_array
23
 
 
26
  """Predict the breed of the dog in the uploaded image."""
27
  img_array = preprocess_image(img)
28
  predictions = model.predict(img_array)
29
+
30
+ # Check the shape of the predictions to make sure the output is correct
31
+ print("Predictions Shape:", predictions.shape)
32
+
33
  class_idx = np.argmax(predictions) # Index of the highest prediction probability
34
  confidence = float(np.max(predictions)) # Confidence score
35