Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,101 +1,86 @@
|
|
| 1 |
-
# Install required libraries
|
| 2 |
-
#!pip install gradio opencv-python-headless
|
| 3 |
-
|
| 4 |
-
# Download YOLO files
|
| 5 |
-
#!wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
|
| 6 |
-
#!wget -nc https://pjreddie.com/media/files/yolov3.weights
|
| 7 |
-
#!wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
|
| 8 |
-
|
| 9 |
import gradio as gr
|
| 10 |
import cv2
|
| 11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def count_people(video_path):
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Load class names
|
| 18 |
-
with open('coco.names', 'r') as f:
|
| 19 |
-
classes = [line.strip() for line in f.readlines()]
|
| 20 |
-
|
| 21 |
-
# Open video
|
| 22 |
cap = cv2.VideoCapture(video_path)
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
frame_count = 0
|
| 25 |
-
total_people_count = 0
|
| 26 |
people_per_frame = []
|
| 27 |
-
|
| 28 |
-
while
|
| 29 |
ret, frame = cap.read()
|
| 30 |
if not ret:
|
| 31 |
break
|
| 32 |
-
|
| 33 |
height, width, _ = frame.shape
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
|
| 37 |
net.setInput(blob)
|
| 38 |
-
|
| 39 |
-
# Get output layer names
|
| 40 |
-
output_layers_names = net.getUnconnectedOutLayersNames()
|
| 41 |
-
|
| 42 |
# Forward pass
|
| 43 |
layer_outputs = net.forward(output_layers_names)
|
| 44 |
-
|
| 45 |
-
# Lists to store detected people
|
| 46 |
-
boxes = []
|
| 47 |
-
confidences = []
|
| 48 |
-
|
| 49 |
# Process detections
|
|
|
|
| 50 |
for output in layer_outputs:
|
| 51 |
for detection in output:
|
| 52 |
scores = detection[5:]
|
| 53 |
class_id = np.argmax(scores)
|
| 54 |
confidence = scores[class_id]
|
| 55 |
-
|
| 56 |
-
# Check if detected object is a person
|
| 57 |
if classes[class_id] == 'person' and confidence > 0.5:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
h = int(detection[3] * height)
|
| 63 |
-
|
| 64 |
-
# Rectangle coordinates
|
| 65 |
-
x = int(center_x - w/2)
|
| 66 |
-
y = int(center_y - h/2)
|
| 67 |
-
|
| 68 |
boxes.append([x, y, w, h])
|
| 69 |
confidences.append(float(confidence))
|
| 70 |
-
|
| 71 |
-
# Apply
|
| 72 |
-
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
| 73 |
-
|
| 74 |
# Count people in this frame
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
total_people_count += people_in_frame
|
| 78 |
-
|
| 79 |
frame_count += 1
|
| 80 |
-
|
| 81 |
-
# Release resources
|
| 82 |
cap.release()
|
| 83 |
-
|
| 84 |
-
#
|
| 85 |
return {
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
'People in a Video': int(np.max(people_per_frame)) #Max People in a Single Frame
|
| 90 |
}
|
| 91 |
|
| 92 |
-
#
|
| 93 |
def analyze_video(video_file):
|
| 94 |
result = count_people(video_file)
|
| 95 |
-
|
| 96 |
-
return result_str
|
| 97 |
|
| 98 |
-
# Gradio
|
| 99 |
interface = gr.Interface(
|
| 100 |
fn=analyze_video,
|
| 101 |
inputs=gr.Video(label="Upload Video"),
|
|
@@ -104,5 +89,5 @@ interface = gr.Interface(
|
|
| 104 |
description="Upload a video to detect and count people using YOLOv3."
|
| 105 |
)
|
| 106 |
|
| 107 |
-
# Launch
|
| 108 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Load YOLO model
|
| 7 |
+
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
|
| 8 |
+
|
| 9 |
+
# Enable GPU (if available)
|
| 10 |
+
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
| 11 |
+
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
| 12 |
+
|
| 13 |
+
# Load class names
|
| 14 |
+
with open('coco.names', 'r') as f:
|
| 15 |
+
classes = [line.strip() for line in f.readlines()]
|
| 16 |
+
|
| 17 |
+
# Get YOLO output layer names
|
| 18 |
+
output_layers_names = net.getUnconnectedOutLayersNames()
|
| 19 |
|
| 20 |
def count_people(video_path):
|
| 21 |
+
if not os.path.exists(video_path):
|
| 22 |
+
return "Error: Video file not found."
|
| 23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
cap = cv2.VideoCapture(video_path)
|
| 25 |
+
if not cap.isOpened():
|
| 26 |
+
return "Error: Unable to open video file."
|
| 27 |
+
|
| 28 |
frame_count = 0
|
|
|
|
| 29 |
people_per_frame = []
|
| 30 |
+
|
| 31 |
+
while True:
|
| 32 |
ret, frame = cap.read()
|
| 33 |
if not ret:
|
| 34 |
break
|
| 35 |
+
|
| 36 |
height, width, _ = frame.shape
|
| 37 |
+
|
| 38 |
+
# Convert frame to YOLO format
|
| 39 |
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
|
| 40 |
net.setInput(blob)
|
| 41 |
+
|
|
|
|
|
|
|
|
|
|
| 42 |
# Forward pass
|
| 43 |
layer_outputs = net.forward(output_layers_names)
|
| 44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
# Process detections
|
| 46 |
+
boxes, confidences = [], []
|
| 47 |
for output in layer_outputs:
|
| 48 |
for detection in output:
|
| 49 |
scores = detection[5:]
|
| 50 |
class_id = np.argmax(scores)
|
| 51 |
confidence = scores[class_id]
|
| 52 |
+
|
|
|
|
| 53 |
if classes[class_id] == 'person' and confidence > 0.5:
|
| 54 |
+
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
|
| 55 |
+
w, h = int(detection[2] * width), int(detection[3] * height)
|
| 56 |
+
x, y = int(center_x - w / 2), int(center_y - h / 2)
|
| 57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
boxes.append([x, y, w, h])
|
| 59 |
confidences.append(float(confidence))
|
| 60 |
+
|
| 61 |
+
# Apply Non-Maximum Suppression (NMS)
|
| 62 |
+
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else []
|
| 63 |
+
|
| 64 |
# Count people in this frame
|
| 65 |
+
people_per_frame.append(len(indexes))
|
| 66 |
+
|
|
|
|
|
|
|
| 67 |
frame_count += 1
|
| 68 |
+
|
|
|
|
| 69 |
cap.release()
|
| 70 |
+
|
| 71 |
+
# Generate analytics
|
| 72 |
return {
|
| 73 |
+
"Total Frames Processed": frame_count,
|
| 74 |
+
"Max People in a Single Frame": int(np.max(people_per_frame)) if people_per_frame else 0,
|
| 75 |
+
"Avg People Per Frame": round(np.mean(people_per_frame), 2) if people_per_frame else 0
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
+
# Gradio UI function
|
| 79 |
def analyze_video(video_file):
|
| 80 |
result = count_people(video_file)
|
| 81 |
+
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
|
|
|
| 82 |
|
| 83 |
+
# Gradio Interface
|
| 84 |
interface = gr.Interface(
|
| 85 |
fn=analyze_video,
|
| 86 |
inputs=gr.Video(label="Upload Video"),
|
|
|
|
| 89 |
description="Upload a video to detect and count people using YOLOv3."
|
| 90 |
)
|
| 91 |
|
| 92 |
+
# Launch app
|
| 93 |
interface.launch()
|