Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
|
| 7 |
+
# Load YOLOv12x model
|
| 8 |
+
MODEL_PATH = "yolov12x.pt" # Ensure the model is uploaded to the Hugging Face Space
|
| 9 |
+
model = YOLO(MODEL_PATH)
|
| 10 |
+
|
| 11 |
+
# COCO dataset class IDs
|
| 12 |
+
PERSON_CLASS_ID = 0 # "person"
|
| 13 |
+
TRUCK_CLASS_ID = 7 # "truck"
|
| 14 |
+
|
| 15 |
+
def count_objects(video_path):
|
| 16 |
+
cap = cv2.VideoCapture(video_path)
|
| 17 |
+
if not cap.isOpened():
|
| 18 |
+
return "Error: Unable to open video file."
|
| 19 |
+
|
| 20 |
+
frame_count = 0
|
| 21 |
+
object_counts = {"people": [], "trucks": []}
|
| 22 |
+
frame_skip = 5 # Process every 5th frame for efficiency
|
| 23 |
+
|
| 24 |
+
while True:
|
| 25 |
+
ret, frame = cap.read()
|
| 26 |
+
if not ret:
|
| 27 |
+
break # End of video
|
| 28 |
+
|
| 29 |
+
frame_count += 1
|
| 30 |
+
if frame_count % frame_skip != 0:
|
| 31 |
+
continue # Skip frames to improve efficiency
|
| 32 |
+
|
| 33 |
+
# Run YOLOv12x inference
|
| 34 |
+
results = model(frame, verbose=False)
|
| 35 |
+
|
| 36 |
+
people_count, truck_count = 0, 0
|
| 37 |
+
for result in results:
|
| 38 |
+
for box in result.boxes:
|
| 39 |
+
class_id = int(box.cls.item()) # Get class ID
|
| 40 |
+
confidence = float(box.conf.item()) # Get confidence score
|
| 41 |
+
|
| 42 |
+
# Count objects based on their class IDs
|
| 43 |
+
if class_id == PERSON_CLASS_ID and confidence > 0.5:
|
| 44 |
+
people_count += 1
|
| 45 |
+
elif class_id == TRUCK_CLASS_ID and confidence > 0.5:
|
| 46 |
+
truck_count += 1
|
| 47 |
+
|
| 48 |
+
object_counts["people"].append(people_count)
|
| 49 |
+
object_counts["trucks"].append(truck_count)
|
| 50 |
+
|
| 51 |
+
cap.release()
|
| 52 |
+
|
| 53 |
+
return {
|
| 54 |
+
"Max People in a Frame": int(np.max(object_counts["people"])) if object_counts["people"] else 0,
|
| 55 |
+
"Max Trucks in a Frame": int(np.max(object_counts["trucks"])) if object_counts["trucks"] else 0
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Gradio UI function
|
| 59 |
+
def analyze_video(video_file):
|
| 60 |
+
result = count_objects(video_file)
|
| 61 |
+
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
| 62 |
+
|
| 63 |
+
# Define Gradio interface
|
| 64 |
+
iface = gr.Interface(
|
| 65 |
+
fn=analyze_video,
|
| 66 |
+
inputs=gr.Video(label="Upload Video"),
|
| 67 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
| 68 |
+
title="YOLOv12x Object Counter",
|
| 69 |
+
description="Upload a video to count people and trucks using YOLOv12x."
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Launch the Gradio app
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
iface.launch()
|