import gradio as gr from controlnet_aux import OpenposeDetector from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler import torch from controlnet_aux import OpenposeDetector from diffusers.utils import load_image #Models openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained("/content/drive/MyDrive/hack/800", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16) #optimizations pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() def generate(image,prompt): image = openpose(image) print(image) image = pipe(prompt, image, num_inference_steps=20).images[0] return image gr.Interface(fn=generate, inputs=["image","text"], outputs="image").launch(share=True)