""" Crawl4AI Demo Application ==================================================== This is a modified version of the Crawl4AI demo application specifically designed for deployment on Hugging Face Spaces. Features: --------- - Web interface built with Gradio for interactive use - Support for multiple crawler types (Basic, LLM, Cosine, JSON/CSS) - Configurable word count threshold - Markdown output with metadata - Sub-page crawling capabilities - Lazy loading support Usage: ------ This version is specifically designed for Hugging Face Spaces deployment. Simply upload this file to your Space and it will automatically run. Dependencies: ------------ - gradio - crawl4ai>=0.4.3b0 - python-dotenv>=1.0.0 - pydantic>=2.5.0 """ import gradio as gr import asyncio from typing import Optional, Dict, Any, List, Set from enum import Enum from pydantic import BaseModel from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode, BrowserConfig from crawl4ai.extraction_strategy import JsonCssExtractionStrategy import urllib.parse class CrawlerType(str, Enum): """Enumeration of supported crawler types.""" BASIC = "basic" LLM = "llm" COSINE = "cosine" JSON_CSS = "json_css" class ExtractionType(str, Enum): """Enumeration of supported extraction strategies.""" DEFAULT = "default" CSS = "css" XPATH = "xpath" LLM = "llm" COMBINED = "combined" class CrawlRequest(BaseModel): """Request model for crawling operations.""" url: str crawler_type: CrawlerType = CrawlerType.BASIC extraction_type: ExtractionType = ExtractionType.DEFAULT word_count_threshold: int = 100 css_selector: Optional[str] = None xpath_query: Optional[str] = None excluded_tags: Optional[list] = None scan_full_page: bool = False scroll_delay: float = 0.5 crawl_subpages: bool = False max_depth: int = 1 exclude_external_links: bool = True max_pages: int = 10 def create_extraction_strategy(extraction_type: ExtractionType, css_selector: Optional[str] = None, xpath_query: Optional[str] = None) -> Any: """Create an extraction strategy based on the specified type.""" if extraction_type == ExtractionType.CSS and css_selector: schema = { "name": "Content", "baseSelector": css_selector, "fields": [ {"name": "title", "selector": "h1,h2", "type": "text"}, {"name": "text", "selector": "p", "type": "text"}, {"name": "links", "selector": "a", "type": "attribute", "attribute": "href"} ] } return JsonCssExtractionStrategy(schema) return None async def crawl_with_subpages(request: CrawlRequest, base_url: str, current_depth: int = 1, visited: Set[str] = None) -> Dict: """Recursively crawl pages including sub-pages up to the specified depth.""" if visited is None: visited = set() if current_depth > request.max_depth or len(visited) >= request.max_pages: return None # Normalize URL to avoid duplicates normalized_url = urllib.parse.urljoin(request.url, '/') if normalized_url in visited: return None # Create run configuration for current page run_config = CrawlerRunConfig( cache_mode=CacheMode.BYPASS, verbose=True, word_count_threshold=request.word_count_threshold, css_selector=request.css_selector, excluded_tags=request.excluded_tags or ["nav", "footer", "header"], exclude_external_links=request.exclude_external_links, wait_for=f"css:{request.css_selector}" if request.css_selector else None, wait_for_images=True, page_timeout=30000, scan_full_page=request.scan_full_page, scroll_delay=request.scroll_delay, extraction_strategy=create_extraction_strategy( request.extraction_type, request.css_selector, request.xpath_query ) ) browser_config = BrowserConfig( headless=True, viewport_width=1920, viewport_height=1080 ) results = { "pages": [], "total_links": 0, "visited_pages": len(visited) } try: async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(url=request.url, config=run_config) if not result.success: print(f"Failed to crawl {request.url}: {result.error_message}") return None # Add current page result page_result = { "url": request.url, "markdown": result.markdown_v2 if hasattr(result, 'markdown_v2') else "", "extracted_content": result.extracted_content if hasattr(result, 'extracted_content') else None, "depth": current_depth } results["pages"].append(page_result) visited.add(normalized_url) # Process sub-pages if enabled if request.crawl_subpages and hasattr(result, 'links'): internal_links = result.links.get("internal", []) if internal_links: results["total_links"] += len(internal_links) for link in internal_links: if len(visited) >= request.max_pages: break try: normalized_link = urllib.parse.urljoin(request.url, link) link_domain = urllib.parse.urlparse(normalized_link).netloc if normalized_link in visited or (request.exclude_external_links and link_domain != base_url): continue sub_request = CrawlRequest( **{**request.dict(), "url": normalized_link} ) sub_result = await crawl_with_subpages( sub_request, base_url, current_depth + 1, visited ) if sub_result: results["pages"].extend(sub_result["pages"]) results["total_links"] += sub_result["total_links"] results["visited_pages"] = len(visited) except Exception as e: print(f"Error processing link {link}: {str(e)}") continue return results except Exception as e: print(f"Error crawling {request.url}: {str(e)}") return None async def crawl_url(request: CrawlRequest) -> Dict: """Crawl a URL and return the extracted content.""" try: base_url = urllib.parse.urlparse(request.url).netloc if request.crawl_subpages: results = await crawl_with_subpages(request, base_url) if not results or not results["pages"]: raise Exception(f"Failed to crawl pages starting from {request.url}") combined_markdown = "\\n\\n---\\n\\n".join( f"## Page: {page['url']}\\n{page['markdown']}" for page in results["pages"] ) return { "markdown": combined_markdown, "metadata": { "url": request.url, "crawler_type": request.crawler_type.value, "extraction_type": request.extraction_type.value, "word_count_threshold": request.word_count_threshold, "css_selector": request.css_selector, "xpath_query": request.xpath_query, "scan_full_page": request.scan_full_page, "scroll_delay": request.scroll_delay, "total_pages_crawled": results["visited_pages"], "total_links_found": results["total_links"], "max_depth_reached": min(request.max_depth, max(page["depth"] for page in results["pages"])) }, "pages": results["pages"] } else: wait_condition = f"css:{request.css_selector}" if request.css_selector else None run_config = CrawlerRunConfig( cache_mode=CacheMode.BYPASS, word_count_threshold=request.word_count_threshold, css_selector=request.css_selector, excluded_tags=request.excluded_tags or ["nav", "footer", "header"], wait_for=wait_condition, wait_for_images=True, page_timeout=30000, scan_full_page=request.scan_full_page, scroll_delay=request.scroll_delay, extraction_strategy=create_extraction_strategy( request.extraction_type, request.css_selector, request.xpath_query ) ) browser_config = BrowserConfig( headless=True, viewport_width=1920, viewport_height=1080 ) async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(url=request.url, config=run_config) if not result.success: raise Exception(result.error_message) images = result.media.get("images", []) if hasattr(result, 'media') else [] image_info = "\n### Images Found\n" if images else "" for i, img in enumerate(images[:5]): image_info += f"- Image {i+1}: {img.get('src', 'N/A')}\n" if img.get('alt'): image_info += f" Alt: {img['alt']}\n" if img.get('score'): image_info += f" Score: {img['score']}\n" return { "markdown": result.markdown_v2 if hasattr(result, 'markdown_v2') else "", "metadata": { "url": request.url, "crawler_type": request.crawler_type.value, "extraction_type": request.extraction_type.value, "word_count_threshold": request.word_count_threshold, "css_selector": request.css_selector, "xpath_query": request.xpath_query, "scan_full_page": request.scan_full_page, "scroll_delay": request.scroll_delay, "wait_condition": wait_condition }, "extracted_content": result.extracted_content if hasattr(result, 'extracted_content') else None, "image_info": image_info } except Exception as e: raise Exception(str(e)) async def gradio_crawl( url: str, crawler_type: str, extraction_type: str, word_count_threshold: int, css_selector: str, xpath_query: str, scan_full_page: bool, scroll_delay: float, crawl_subpages: bool, max_depth: int, max_pages: int, exclude_external_links: bool ) -> tuple[str, str]: """Handle crawling requests from the Gradio interface.""" try: request = CrawlRequest( url=url, crawler_type=CrawlerType(crawler_type.lower()), extraction_type=ExtractionType(extraction_type.lower()), word_count_threshold=word_count_threshold, css_selector=css_selector if css_selector else None, xpath_query=xpath_query if xpath_query else None, scan_full_page=scan_full_page, scroll_delay=scroll_delay, crawl_subpages=crawl_subpages, max_depth=max_depth, max_pages=max_pages, exclude_external_links=exclude_external_links ) result = await crawl_url(request) markdown_content = str(result["markdown"]) if result.get("markdown") else "" metadata_str = f"""### Metadata - URL: {result['metadata']['url']} - Crawler Type: {result['metadata']['crawler_type']} - Extraction Type: {result['metadata']['extraction_type']} - Word Count Threshold: {result['metadata']['word_count_threshold']} - CSS Selector: {result['metadata']['css_selector'] or 'None'} - XPath Query: {result['metadata']['xpath_query'] or 'None'} - Full Page Scan: {result['metadata']['scan_full_page']} - Scroll Delay: {result['metadata']['scroll_delay']}s""" if crawl_subpages: metadata_str += f""" - Total Pages Crawled: {result['metadata'].get('total_pages_crawled', 0)} - Total Links Found: {result['metadata'].get('total_links_found', 0)} - Max Depth Reached: {result['metadata'].get('max_depth_reached', 1)}""" if result.get('image_info'): metadata_str += f"\n\n{result['image_info']}" if result.get("extracted_content"): metadata_str += f"\n\n### Extracted Content\n```json\n{result['extracted_content']}\n```" return markdown_content, metadata_str except Exception as e: error_msg = f"Error: {str(e)}" return error_msg, "Error occurred while crawling" # Create Gradio interface demo = gr.Interface( fn=gradio_crawl, inputs=[ gr.Textbox( label="URL", placeholder="Enter URL to crawl", info="The webpage URL to extract content from" ), gr.Dropdown( choices=["Basic", "LLM", "Cosine", "JSON/CSS"], label="Crawler Type", value="Basic", info="Select the content extraction strategy" ), gr.Dropdown( choices=["Default", "CSS", "XPath", "LLM", "Combined"], label="Extraction Type", value="Default", info="Choose how to extract content from the page" ), gr.Slider( minimum=50, maximum=500, value=100, step=50, label="Word Count Threshold", info="Minimum number of words required for content extraction" ), gr.Textbox( label="CSS Selector", placeholder="e.g., article.content, main.post", info="CSS selector to target specific content (used with CSS extraction type)" ), gr.Textbox( label="XPath Query", placeholder="e.g., //article[@class='content']", info="XPath query to target specific content (used with XPath extraction type)" ), gr.Checkbox( label="Scan Full Page", value=False, info="Enable to scroll through the entire page to load lazy content" ), gr.Slider( minimum=0.1, maximum=2.0, value=0.5, step=0.1, label="Scroll Delay", info="Delay between scroll steps in seconds when scanning full page" ), gr.Checkbox( label="Crawl Sub-pages", value=False, info="Enable to crawl links found on the page" ), gr.Slider( minimum=1, maximum=5, value=1, step=1, label="Max Crawl Depth", info="Maximum depth for recursive crawling (1 = only direct links)" ), gr.Slider( minimum=1, maximum=50, value=10, step=5, label="Max Pages", info="Maximum number of pages to crawl" ), gr.Checkbox( label="Exclude External Links", value=True, info="Only crawl links within the same domain" ) ], outputs=[ gr.Markdown(label="Generated Markdown"), gr.Markdown(label="Metadata & Extraction Results") ], title="Crawl4AI Demo", description=""" This demo allows you to extract content from web pages using different crawling and extraction strategies. 1. Enter a URL to crawl 2. Select a crawler type (Basic, LLM, Cosine, JSON/CSS) 3. Choose an extraction strategy (Default, CSS, XPath, LLM, Combined) 4. Configure additional options: - Word count threshold for content filtering - CSS selectors for targeting specific content - XPath queries for precise extraction - Full page scanning for lazy-loaded content - Scroll delay for controlling page scanning speed - Sub-page crawling with depth control - Maximum number of pages to crawl - External link filtering The extracted content will be displayed in markdown format along with metadata and extraction results. When sub-page crawling is enabled, content from all crawled pages will be combined in the output. """, examples=[ ["https://example.com", "Basic", "Default", 100, "", "", False, 0.5, False, 1, 10, True], ["https://example.com/blog", "Basic", "CSS", 100, "article.post", "", True, 0.5, True, 2, 5, True], ] ) # For Hugging Face Spaces, we launch just the Gradio interface if __name__ == "__main__": demo.launch()