Spaces:
Sleeping
Sleeping
Commit
·
04affa2
1
Parent(s):
ae34fe7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from prophet import Prophet
|
3 |
+
import plotly.express as px
|
4 |
+
import gradio as gr
|
5 |
+
from prophet.plot import plot_plotly, plot_components_plotly
|
6 |
+
|
7 |
+
|
8 |
+
def forecast_timeseries(data_file, forecast_periods):
|
9 |
+
# Load the input data
|
10 |
+
|
11 |
+
df = pd.read_csv(data_file.name,encoding='utf-8')
|
12 |
+
df['WEIGHT_LBS'] = df['WEIGHT_LBS'].astype('int64')
|
13 |
+
df = df.rename(columns={'RECV_DATE': 'ds', 'WEIGHT_LBS': 'y'})
|
14 |
+
|
15 |
+
weekly_df = df[['ds','y']].sort_values('ds')
|
16 |
+
weekly_df = weekly_df.groupby('ds',as_index=False)['y'].sum()
|
17 |
+
weekly_df['ds'] = pd.to_datetime(weekly_df['ds'])
|
18 |
+
weekly_df.set_index('ds', inplace=True)
|
19 |
+
weekly_df = weekly_df.resample('w').sum()
|
20 |
+
weekly_df.reset_index(inplace=True)
|
21 |
+
|
22 |
+
train = weekly_df[:int(0.8*(weekly_df.shape[0]))]
|
23 |
+
test = weekly_df[int(0.8*(weekly_df.shape[0]))+1:]
|
24 |
+
|
25 |
+
m = Prophet()
|
26 |
+
m.fit(train[['ds','y']])
|
27 |
+
|
28 |
+
|
29 |
+
# Create a future dataframe for forecasting
|
30 |
+
future = m.make_future_dataframe(periods=int(forecast_periods),freq='W')
|
31 |
+
|
32 |
+
# Make predictions
|
33 |
+
forecast = m.predict(future)
|
34 |
+
|
35 |
+
# Extract relevant columns from the forecast
|
36 |
+
forecast_data = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
|
37 |
+
|
38 |
+
|
39 |
+
# Plot the forecasted data with upper and lower bounds
|
40 |
+
# fig = px.line(forecast, x='ds', y='yhat', title='Forecasted Time Series')
|
41 |
+
# fig.add_scatter(x=df['ds'], y=df['y'], mode='markers', name='Actual Values')
|
42 |
+
# fig.add_scatter(x=forecast['ds'], y=forecast['yhat_upper'], mode='lines', name='Upper Bound')
|
43 |
+
# fig.add_scatter(x=forecast['ds'], y=forecast['yhat_lower'], mode='lines', name='Lower Bound')
|
44 |
+
|
45 |
+
fig = plot_plotly(m, forecast)
|
46 |
+
fig1 = plot_components_plotly(m, forecast)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
return df.head(),fig,fig1 ,forecast_data
|
52 |
+
|
53 |
+
|
54 |
+
# Define input and output interfaces for the Gradio app
|
55 |
+
inputs = [
|
56 |
+
gr.inputs.File(label="Upload CSV File"),
|
57 |
+
gr.inputs.Number(label="Forecast Periods", default=7),
|
58 |
+
]
|
59 |
+
outputs = [
|
60 |
+
gr.Dataframe(label="Input Data"),
|
61 |
+
gr.Plot(label="Forecast Plot"),
|
62 |
+
gr.Plot(label="Trends"),
|
63 |
+
gr.Dataframe(label="Forecast Results"),
|
64 |
+
]
|
65 |
+
|
66 |
+
# Create the Gradio app
|
67 |
+
iface = gr.Interface(fn=forecast_timeseries, inputs=inputs, outputs=outputs, title="Time Series Forecasting with Prophet")
|
68 |
+
iface.launch(inline = False,share=True,debug=False)
|
69 |
+
|