Spaces:
Sleeping
Sleeping
tomas.helmfridsson
commited on
Commit
Β·
3b838f7
1
Parent(s):
405b739
update 29
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from langchain_huggingface.llms import HuggingFacePipeline
|
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
|
11 |
-
# ββ 1) Ladda &
|
12 |
all_docs, files = [], []
|
13 |
splitter = RecursiveCharacterTextSplitter(chunk_size=250, chunk_overlap=30)
|
14 |
|
@@ -16,84 +16,71 @@ for fn in os.listdir("document"):
|
|
16 |
if fn.lower().endswith(".pdf"):
|
17 |
path = os.path.join("document", fn)
|
18 |
loader = PyPDFLoader(path)
|
19 |
-
pages = loader.load()
|
20 |
-
chunks = splitter.split_documents(pages)
|
21 |
all_docs.extend(chunks)
|
22 |
files.append(fn)
|
23 |
|
24 |
-
# ββ 2)
|
25 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
26 |
vs = FAISS.from_documents(all_docs, emb)
|
27 |
|
28 |
-
# ββ 3) Initiera
|
29 |
pipe = pipeline(
|
30 |
"text-generation",
|
31 |
model="tiiuae/falcon-rw-1b",
|
32 |
-
device=-1,
|
33 |
-
max_new_tokens=64
|
34 |
)
|
35 |
llm = HuggingFacePipeline(
|
36 |
pipeline=pipe,
|
37 |
-
model_kwargs={"temperature": 0.3}
|
38 |
-
streaming=True # aktivera live-streaming av svar
|
39 |
)
|
40 |
|
41 |
-
# Retrievern hΓ€mtar bara 1 chunk fΓΆr max snabbhet
|
42 |
retriever = vs.as_retriever(search_kwargs={"k": 1})
|
43 |
-
|
44 |
qa = RetrievalQA.from_chain_type(
|
45 |
llm=llm,
|
46 |
retriever=retriever,
|
47 |
chain_type="stuff"
|
48 |
)
|
49 |
|
50 |
-
# ββ 4) Chat
|
51 |
def chat_fn(message, temperature, history):
|
52 |
history = history or []
|
53 |
if not message.strip():
|
54 |
-
history.append({"role":
|
55 |
return history
|
56 |
|
57 |
-
history.append({"role":
|
58 |
|
59 |
if len(message) > 1000:
|
60 |
history.append({
|
61 |
-
"role":
|
62 |
-
"content":
|
63 |
})
|
64 |
return history
|
65 |
|
66 |
llm.model_kwargs["temperature"] = temperature
|
67 |
-
|
68 |
try:
|
69 |
-
svar = qa.invoke({"query":
|
70 |
except Exception as e:
|
71 |
svar = f"β Ett fel uppstod: {e}"
|
72 |
|
73 |
-
history.append({"role":
|
74 |
return history
|
75 |
|
76 |
-
# ββ 5)
|
77 |
with gr.Blocks() as demo:
|
78 |
gr.Markdown("## π Dokumentassistent (Svenska)")
|
79 |
-
gr.Markdown(
|
80 |
-
"**β
Laddade PDF-filer:**\n\n" +
|
81 |
-
"\n".join(f"- {f}" for f in files)
|
82 |
-
)
|
83 |
|
84 |
with gr.Row():
|
85 |
-
txt = gr.Textbox(
|
86 |
-
|
87 |
-
|
88 |
-
placeholder="Exempel: Vad anges fΓΆrberedelser infΓΆr mΓΆte?"
|
89 |
-
)
|
90 |
-
temp = gr.Slider(
|
91 |
-
0.0, 1.0, value=0.3, step=0.05,
|
92 |
-
label="Temperatur"
|
93 |
-
)
|
94 |
send = gr.Button("Skicka")
|
95 |
|
96 |
-
chatbot = gr.Chatbot(value=[], type="messages"
|
97 |
chat_state = gr.State([])
|
98 |
|
99 |
send.click(
|
@@ -103,5 +90,4 @@ with gr.Blocks() as demo:
|
|
103 |
)
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
-
# share=True ger en publik lΓ€nk till ditt Space
|
107 |
demo.launch(share=True)
|
|
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
|
11 |
+
# ββ 1) Ladda & dela upp PDF:er ββββββββββββββββββββββββββββββββ
|
12 |
all_docs, files = [], []
|
13 |
splitter = RecursiveCharacterTextSplitter(chunk_size=250, chunk_overlap=30)
|
14 |
|
|
|
16 |
if fn.lower().endswith(".pdf"):
|
17 |
path = os.path.join("document", fn)
|
18 |
loader = PyPDFLoader(path)
|
19 |
+
pages = loader.load()
|
20 |
+
chunks = splitter.split_documents(pages)
|
21 |
all_docs.extend(chunks)
|
22 |
files.append(fn)
|
23 |
|
24 |
+
# ββ 2) Bygg FAISS med svenska-embeddingββββββββββββββββββββββββ
|
25 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
26 |
vs = FAISS.from_documents(all_docs, emb)
|
27 |
|
28 |
+
# ββ 3) Initiera CPUβpipeline fΓΆr Falcon-1Bβββββββββββββββββββ
|
29 |
pipe = pipeline(
|
30 |
"text-generation",
|
31 |
model="tiiuae/falcon-rw-1b",
|
32 |
+
device=-1,
|
33 |
+
max_new_tokens=64
|
34 |
)
|
35 |
llm = HuggingFacePipeline(
|
36 |
pipeline=pipe,
|
37 |
+
model_kwargs={"temperature": 0.3}
|
|
|
38 |
)
|
39 |
|
|
|
40 |
retriever = vs.as_retriever(search_kwargs={"k": 1})
|
|
|
41 |
qa = RetrievalQA.from_chain_type(
|
42 |
llm=llm,
|
43 |
retriever=retriever,
|
44 |
chain_type="stuff"
|
45 |
)
|
46 |
|
47 |
+
# ββ 4) Chatβfunktion i βmessagesββformatββββββββββββββββββββββββ
|
48 |
def chat_fn(message, temperature, history):
|
49 |
history = history or []
|
50 |
if not message.strip():
|
51 |
+
history.append({"role":"assistant","content":"β οΈ Du mΓ₯ste skriva en frΓ₯ga."})
|
52 |
return history
|
53 |
|
54 |
+
history.append({"role":"user","content":message})
|
55 |
|
56 |
if len(message) > 1000:
|
57 |
history.append({
|
58 |
+
"role":"assistant",
|
59 |
+
"content":f"β οΈ FrΓ₯gan Γ€r fΓΆr lΓ₯ng ({len(message)} tecken)."
|
60 |
})
|
61 |
return history
|
62 |
|
63 |
llm.model_kwargs["temperature"] = temperature
|
|
|
64 |
try:
|
65 |
+
svar = qa.invoke({"query":message})["result"]
|
66 |
except Exception as e:
|
67 |
svar = f"β Ett fel uppstod: {e}"
|
68 |
|
69 |
+
history.append({"role":"assistant","content":svar})
|
70 |
return history
|
71 |
|
72 |
+
# ββ 5) GradioβUI & public linkββββββββββββββββββββββββββββββββββ
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("## π Dokumentassistent (Svenska)")
|
75 |
+
gr.Markdown("**β
Laddade PDF-filer:**\n\n" + "\n".join(f"- {f}" for f in files))
|
|
|
|
|
|
|
76 |
|
77 |
with gr.Row():
|
78 |
+
txt = gr.Textbox(lines=2, label="Din frΓ₯ga:",
|
79 |
+
placeholder="Ex: Vad anges fΓΆr krav?")
|
80 |
+
temp = gr.Slider(0.0,1.0,value=0.3,step=0.05,label="Temperatur")
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
send = gr.Button("Skicka")
|
82 |
|
83 |
+
chatbot = gr.Chatbot(value=[], type="messages")
|
84 |
chat_state = gr.State([])
|
85 |
|
86 |
send.click(
|
|
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|
|
|
93 |
demo.launch(share=True)
|