Spaces:
Sleeping
Sleeping
tomas.helmfridsson
commited on
Commit
·
660b98a
1
Parent(s):
1eab980
moved files
Browse files- app.py +0 -7
- document/app.py +0 -50
- document/requirements.txt +0 -8
app.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
<<<<<<< HEAD
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_community.llms import HuggingFacePipeline
|
7 |
-
=======
|
8 |
-
from langchain.document_loaders import PyPDFLoader
|
9 |
-
from langchain.vectorstores import FAISS
|
10 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
-
from langchain.llms import HuggingFacePipeline
|
12 |
-
>>>>>>> 2d55fcd80accaa058042bb792107864492776fea
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from transformers import pipeline
|
15 |
import os
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_community.llms import HuggingFacePipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from transformers import pipeline
|
8 |
import os
|
document/app.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from langchain_community.document_loaders import PyPDFLoader
|
3 |
-
from langchain_community.vectorstores import FAISS
|
4 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
-
from langchain_community.llms import HuggingFacePipeline
|
6 |
-
from langchain.chains import RetrievalQA
|
7 |
-
from transformers import pipeline
|
8 |
-
import os
|
9 |
-
|
10 |
-
# 1. Ladda och indexera alla PDF:er i mappen "dokument/"
|
11 |
-
def load_vectorstore():
|
12 |
-
all_docs = []
|
13 |
-
for filename in os.listdir("document"):
|
14 |
-
if filename.endswith(".pdf"):
|
15 |
-
path = os.path.join("document", filename)
|
16 |
-
loader = PyPDFLoader(path)
|
17 |
-
docs = loader.load_and_split()
|
18 |
-
all_docs.extend(docs)
|
19 |
-
embedding = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
20 |
-
return FAISS.from_documents(all_docs, embedding)
|
21 |
-
|
22 |
-
vectorstore = load_vectorstore()
|
23 |
-
|
24 |
-
# 2. Initiera Zephyr-modellen
|
25 |
-
def load_zephyr():
|
26 |
-
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta",
|
27 |
-
model_kwargs={"temperature": 0.3, "max_new_tokens": 512})
|
28 |
-
return HuggingFacePipeline(pipeline=pipe)
|
29 |
-
|
30 |
-
llm = load_zephyr()
|
31 |
-
|
32 |
-
# 3. Bygg QA-kedjan
|
33 |
-
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
34 |
-
|
35 |
-
# 4. Funktion för Gradio-chat
|
36 |
-
chat_history = []
|
37 |
-
|
38 |
-
def chat_fn(message, history):
|
39 |
-
svar = qa_chain.run(message)
|
40 |
-
return svar
|
41 |
-
|
42 |
-
# 5. Starta Gradio-gränssnittet
|
43 |
-
chatbot = gr.ChatInterface(fn=chat_fn,
|
44 |
-
title="🌟 Dokumentagent på Svenska",
|
45 |
-
theme="soft",
|
46 |
-
examples=["Vad handlar dokumentet om?", "Finns det något om diabetes?", "Vilken åtgärd föreslås?"],
|
47 |
-
retry_btn="↻ Pröva igen",
|
48 |
-
submit_btn="Ställ fråga")
|
49 |
-
|
50 |
-
chatbot.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document/requirements.txt
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
2 |
-
gradio
|
3 |
-
langchain
|
4 |
-
transformers
|
5 |
-
sentence-transformers
|
6 |
-
faiss-cpu
|
7 |
-
pdfminer.six
|
8 |
-
langchain-community
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|