Spaces:
Running
Running
tomas.helmfridsson
commited on
Commit
·
d7c8195
1
Parent(s):
0d62cf2
update guis 9
Browse files
app.py
CHANGED
@@ -1,99 +1,79 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_huggingface.llms import HuggingFacePipeline
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from transformers import pipeline
|
8 |
-
import os
|
9 |
|
10 |
-
# 1
|
11 |
-
# Returnerar vectorstore och lista över filnamn
|
12 |
def load_vectorstore():
|
13 |
-
all_docs = []
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
path = os.path.join("document", filename)
|
18 |
loader = PyPDFLoader(path)
|
19 |
docs = loader.load_and_split()
|
20 |
all_docs.extend(docs)
|
21 |
-
loaded_files.append(
|
22 |
embedding = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
23 |
vectorstore = FAISS.from_documents(all_docs, embedding)
|
24 |
return vectorstore, loaded_files
|
25 |
|
26 |
-
# 2
|
27 |
-
def create_chain(vectorstore, temp):
|
28 |
-
llm_pipeline = pipeline(
|
29 |
-
"text-generation", model="tiiuae/falcon-rw-1b", device=-1
|
30 |
-
)
|
31 |
-
llm = HuggingFacePipeline(
|
32 |
-
pipeline=llm_pipeline,
|
33 |
-
model_kwargs={"temperature": temp, "max_new_tokens": 512},
|
34 |
-
)
|
35 |
-
return RetrievalQA.from_chain_type(
|
36 |
-
llm=llm, retriever=vectorstore.as_retriever()
|
37 |
-
)
|
38 |
-
|
39 |
-
# 3. Gradio UI
|
40 |
with gr.Blocks() as demo:
|
41 |
-
#
|
42 |
-
|
43 |
-
label="🎛️ Temperatur (0 = exakt, 1 = kreativ)",
|
44 |
-
minimum=0.0,
|
45 |
-
maximum=1.0,
|
46 |
-
value=0.3,
|
47 |
-
step=0.05,
|
48 |
-
)
|
49 |
-
# Chat-komponent (OpenAI-stil)
|
50 |
-
chatbot = gr.Chatbot(type="messages")
|
51 |
-
input_box = gr.Textbox(label="Din fråga")
|
52 |
-
send_button = gr.Button("Skicka")
|
53 |
|
54 |
-
#
|
55 |
-
vectorstore,
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
|
|
|
60 |
gr.Markdown(
|
61 |
-
f"✅ Klar! Du kan nu ställa frågor om dokumenten nedan
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
chain = create_chain(vectorstore, temp)
|
71 |
-
history = history + [{"role": "user", "content": message}]
|
72 |
if len(message) > 1000:
|
73 |
-
|
74 |
-
"
|
75 |
-
|
76 |
-
|
77 |
-
return history
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
except Exception as e:
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
send_button.click(
|
88 |
fn=chat_fn,
|
89 |
-
inputs=[
|
90 |
-
|
|
|
|
|
91 |
)
|
92 |
|
93 |
-
|
94 |
-
if __name__ == "__main__":
|
95 |
-
demo.launch()
|
96 |
-
|
97 |
-
if __name__ == "__main__":
|
98 |
-
demo.launch()
|
99 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain_huggingface.llms import HuggingFacePipeline
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from transformers import pipeline
|
|
|
10 |
|
11 |
+
# 1) Ladda och indexera alla PDF-filer
|
|
|
12 |
def load_vectorstore():
|
13 |
+
all_docs, loaded_files = [], []
|
14 |
+
for fn in os.listdir("document"):
|
15 |
+
if fn.lower().endswith(".pdf"):
|
16 |
+
path = os.path.join("document", fn)
|
|
|
17 |
loader = PyPDFLoader(path)
|
18 |
docs = loader.load_and_split()
|
19 |
all_docs.extend(docs)
|
20 |
+
loaded_files.append(fn)
|
21 |
embedding = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
22 |
vectorstore = FAISS.from_documents(all_docs, embedding)
|
23 |
return vectorstore, loaded_files
|
24 |
|
25 |
+
# 2) Bygg UI + logik i Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
with gr.Blocks() as demo:
|
27 |
+
# A) Status‐meddelande under uppstart
|
28 |
+
status = gr.Markdown("🔄 Laddar dokument och modell, vänta…", elem_id="status-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# B) Börja indexera och initiera modell
|
31 |
+
vectorstore, files = load_vectorstore()
|
32 |
+
llm_pipe = pipeline("text-generation", model="tiiuae/falcon-rw-1b", device=-1)
|
33 |
+
llm = HuggingFacePipeline(
|
34 |
+
pipeline=llm_pipe,
|
35 |
+
model_kwargs={"temperature": 0.3, "max_new_tokens": 512}
|
36 |
+
)
|
37 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
38 |
|
39 |
+
# C) Dölj status‐text och visa PDF‐listan när klart
|
40 |
+
status.visible = False
|
41 |
+
file_list_md = "\n".join(f"- {f}" for f in files)
|
42 |
gr.Markdown(
|
43 |
+
f"✅ Klar! Du kan nu ställa frågor om dokumenten nedan:\n\n{file_list_md}",
|
44 |
+
elem_id="status-text"
|
45 |
+
)
|
46 |
|
47 |
+
# D) Temperature‐slider och Chatbot
|
48 |
+
temp_slider = gr.Slider(
|
49 |
+
minimum=0.0, maximum=1.0, value=0.3, step=0.05,
|
50 |
+
label="Temperatur (kreativitetsgrad)"
|
51 |
)
|
52 |
|
53 |
+
def chat_fn(message, temp, history):
|
54 |
+
# Skydd mot alltför långa frågor
|
|
|
|
|
55 |
if len(message) > 1000:
|
56 |
+
return [], [{"role":"assistant","content":
|
57 |
+
f"⚠️ Din fråga är för lång ({len(message)} tecken). Försök korta ner den."}]
|
58 |
+
# Uppdatera temperatur dynamiskt
|
59 |
+
llm.model_kwargs["temperature"] = temp
|
|
|
60 |
try:
|
61 |
+
resp = qa_chain.invoke({"query": message})
|
62 |
+
assistant_msg = resp["result"]
|
63 |
except Exception as e:
|
64 |
+
assistant_msg = f"Ett fel uppstod: {e}"
|
65 |
+
# Returnera hela historiken i OpenAI-stil
|
66 |
+
history = history or []
|
67 |
+
history.append({"role":"user","content":message})
|
68 |
+
history.append({"role":"assistant","content":assistant_msg})
|
69 |
+
return history, history
|
70 |
|
71 |
+
gr.ChatInterface(
|
|
|
72 |
fn=chat_fn,
|
73 |
+
inputs=[gr.Textbox(label="Skriv din fråga här:"), temp_slider],
|
74 |
+
title="🌟 Dokumentassistent (Svenska)",
|
75 |
+
description="Hej! Ställ en fråga baserat på dina PDF-dokument.",
|
76 |
+
chatbot=gr.Chatbot(type="messages")
|
77 |
)
|
78 |
|
79 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|