Updated Gradio App
Browse files
app.py
CHANGED
@@ -15,26 +15,42 @@ def transcribe_and_respond(audio_file):
|
|
15 |
torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
|
18 |
-
# Load the audio file
|
19 |
audio, sr = librosa.load(audio_file, sr=16000)
|
20 |
-
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
24 |
turns = [
|
25 |
-
{'role': 'system', 'content': '
|
26 |
{'role': 'user', 'content': '<|audio|>'}
|
27 |
]
|
28 |
-
|
29 |
# Debug: Print the initial turns
|
30 |
print(f"Initial turns: {turns}")
|
31 |
-
|
32 |
# Call the model with the audio and prompt
|
33 |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
34 |
-
|
35 |
# Debug: Print the final output from the model
|
36 |
print(f"Model output: {output}")
|
37 |
-
|
38 |
return output
|
39 |
|
40 |
except Exception as e:
|
@@ -45,9 +61,9 @@ iface = gr.Interface(
|
|
45 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
46 |
outputs="text",
|
47 |
title="Live Transcription and Response",
|
48 |
-
description="Speak into your microphone, and the model will
|
49 |
live=True
|
50 |
)
|
51 |
|
52 |
if __name__ == "__main__":
|
53 |
-
iface.launch()
|
|
|
15 |
torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
|
18 |
+
# Load the audio file, requesting a sample rate of 16000
|
19 |
audio, sr = librosa.load(audio_file, sr=16000)
|
20 |
+
|
21 |
+
# Convert the loaded audio to a contiguous float32 array
|
22 |
+
audio = np.ascontiguousarray(audio, dtype=np.float32)
|
23 |
+
|
24 |
+
# If audio has more than one channel, convert to mono by averaging channels
|
25 |
+
if audio.ndim > 1:
|
26 |
+
audio = np.mean(audio, axis=-1)
|
27 |
+
|
28 |
+
# Debug: Print audio properties
|
29 |
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
30 |
+
|
31 |
+
# Although we requested 16000 Hz, double-check the sample rate.
|
32 |
+
# If not 16000, force conversion:
|
33 |
+
if sr != 16000:
|
34 |
+
# Ensure the audio is float32 before resampling
|
35 |
+
audio = audio.astype(np.float32)
|
36 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
37 |
+
sr = 16000
|
38 |
|
39 |
+
# Set up the transcription prompt to get exact transcription
|
40 |
turns = [
|
41 |
+
{'role': 'system', 'content': 'Please transcribe the following audio exactly.'},
|
42 |
{'role': 'user', 'content': '<|audio|>'}
|
43 |
]
|
44 |
+
|
45 |
# Debug: Print the initial turns
|
46 |
print(f"Initial turns: {turns}")
|
47 |
+
|
48 |
# Call the model with the audio and prompt
|
49 |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
50 |
+
|
51 |
# Debug: Print the final output from the model
|
52 |
print(f"Model output: {output}")
|
53 |
+
|
54 |
return output
|
55 |
|
56 |
except Exception as e:
|
|
|
61 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
62 |
outputs="text",
|
63 |
title="Live Transcription and Response",
|
64 |
+
description="Speak into your microphone, and the model will transcribe your speech.",
|
65 |
live=True
|
66 |
)
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
+
iface.launch()
|