✅ [Add] test for helper and basic module in model
Browse files
tests/test_model/test_module.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
|
| 7 |
+
project_root = Path(__file__).resolve().parent.parent.parent
|
| 8 |
+
sys.path.append(str(project_root))
|
| 9 |
+
from yolo.model.module import SPPELAN, ADown, CBLinear, Conv, Pool
|
| 10 |
+
|
| 11 |
+
STRIDE = 2
|
| 12 |
+
KERNEL_SIZE = 3
|
| 13 |
+
IN_CHANNELS = 64
|
| 14 |
+
OUT_CHANNELS = 128
|
| 15 |
+
NECK_CHANNELS = 64
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def test_conv():
|
| 19 |
+
conv = Conv(IN_CHANNELS, OUT_CHANNELS, KERNEL_SIZE)
|
| 20 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 21 |
+
out = conv(x)
|
| 22 |
+
assert out.shape == (1, OUT_CHANNELS, 64, 64)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def test_pool_max():
|
| 26 |
+
pool = Pool("max", 2, stride=2)
|
| 27 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 28 |
+
out = pool(x)
|
| 29 |
+
assert out.shape == (1, IN_CHANNELS, 32, 32)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def test_pool_avg():
|
| 33 |
+
pool = Pool("avg", 2, stride=2)
|
| 34 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 35 |
+
out = pool(x)
|
| 36 |
+
assert out.shape == (1, IN_CHANNELS, 32, 32)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def test_adown():
|
| 40 |
+
adown = ADown(IN_CHANNELS, OUT_CHANNELS)
|
| 41 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 42 |
+
out = adown(x)
|
| 43 |
+
assert out.shape == (1, OUT_CHANNELS, 32, 32)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def test_adown():
|
| 47 |
+
adown = ADown(IN_CHANNELS, OUT_CHANNELS)
|
| 48 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 49 |
+
out = adown(x)
|
| 50 |
+
assert out.shape == (1, OUT_CHANNELS, 32, 32)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def test_cblinear():
|
| 54 |
+
cblinear = CBLinear(IN_CHANNELS, [5, 5])
|
| 55 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 56 |
+
outs = cblinear(x)
|
| 57 |
+
assert len(outs) == 2
|
| 58 |
+
assert outs[0].shape == (1, 5, 64, 64)
|
| 59 |
+
assert outs[1].shape == (1, 5, 64, 64)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def test_sppelan():
|
| 63 |
+
sppelan = SPPELAN(IN_CHANNELS, OUT_CHANNELS, NECK_CHANNELS)
|
| 64 |
+
x = torch.randn(1, IN_CHANNELS, 64, 64)
|
| 65 |
+
out = sppelan(x)
|
| 66 |
+
assert out.shape == (1, OUT_CHANNELS, 64, 64)
|
tests/test_tools/test_module_helper.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import pytest
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
project_root = Path(__file__).resolve().parent.parent.parent
|
| 9 |
+
sys.path.append(str(project_root))
|
| 10 |
+
from yolo.tools.module_helper import auto_pad, get_activation
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@pytest.mark.parametrize(
|
| 14 |
+
"kernel_size, dilation, expected",
|
| 15 |
+
[
|
| 16 |
+
(3, 1, (1, 1)),
|
| 17 |
+
((3, 3), (1, 1), (1, 1)),
|
| 18 |
+
(3, (2, 2), (2, 2)),
|
| 19 |
+
((5, 5), 1, (2, 2)),
|
| 20 |
+
((3, 5), (2, 1), (2, 2)),
|
| 21 |
+
],
|
| 22 |
+
)
|
| 23 |
+
def test_auto_pad(kernel_size, dilation, expected):
|
| 24 |
+
assert auto_pad(kernel_size, dilation) == expected, "auto_pad does not calculate padding correctly"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@pytest.mark.parametrize(
|
| 28 |
+
"activation_name, expected_type",
|
| 29 |
+
[("ReLU", nn.ReLU), ("leakyrelu", nn.LeakyReLU), ("none", nn.Identity), (None, nn.Identity), (False, nn.Identity)],
|
| 30 |
+
)
|
| 31 |
+
def test_get_activation(activation_name, expected_type):
|
| 32 |
+
result = get_activation(activation_name)
|
| 33 |
+
assert isinstance(result, expected_type), f"get_activation does not return correct type for {activation_name}"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def test_get_activation_invalid():
|
| 37 |
+
with pytest.raises(ValueError):
|
| 38 |
+
get_activation("unsupported_activation")
|