π [Add] the example: using sliding windows in YOLO
Browse files- examples/notebook_inference.ipynb +12 -10
- examples/notebook_smallobject.ipynb +161 -0
- yolo/model/yolo.py +1 -1
examples/notebook_inference.ipynb
CHANGED
|
@@ -25,15 +25,14 @@
|
|
| 25 |
"source": [
|
| 26 |
"CONFIG_PATH = \"../yolo/config\"\n",
|
| 27 |
"CONFIG_NAME = \"config\"\n",
|
|
|
|
| 28 |
"\n",
|
| 29 |
"DEVICE = 'cuda:0'\n",
|
| 30 |
"CLASS_NUM = 80\n",
|
| 31 |
-
"WEIGHT_PATH = '../weights/v9-c.pt' \n",
|
| 32 |
"IMAGE_PATH = '../demo/images/inference/image.png'\n",
|
| 33 |
"\n",
|
| 34 |
"custom_logger()\n",
|
| 35 |
-
"device = torch.device(DEVICE)
|
| 36 |
-
"image = Image.open(IMAGE_PATH)"
|
| 37 |
]
|
| 38 |
},
|
| 39 |
{
|
|
@@ -43,8 +42,8 @@
|
|
| 43 |
"outputs": [],
|
| 44 |
"source": [
|
| 45 |
"with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
|
| 46 |
-
" cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\", \"model=
|
| 47 |
-
" model = create_model(cfg.model, class_num=CLASS_NUM
|
| 48 |
" transform = AugmentationComposer([], cfg.image_size)\n",
|
| 49 |
" vec2box = Vec2Box(model, cfg.image_size, device)"
|
| 50 |
]
|
|
@@ -55,8 +54,10 @@
|
|
| 55 |
"metadata": {},
|
| 56 |
"outputs": [],
|
| 57 |
"source": [
|
| 58 |
-
"
|
| 59 |
-
"image =
|
|
|
|
|
|
|
| 60 |
]
|
| 61 |
},
|
| 62 |
{
|
|
@@ -67,10 +68,11 @@
|
|
| 67 |
"source": [
|
| 68 |
"with torch.no_grad():\n",
|
| 69 |
" predict = model(image)\n",
|
| 70 |
-
"
|
| 71 |
"\n",
|
| 72 |
-
"
|
| 73 |
-
"
|
|
|
|
| 74 |
]
|
| 75 |
},
|
| 76 |
{
|
|
|
|
| 25 |
"source": [
|
| 26 |
"CONFIG_PATH = \"../yolo/config\"\n",
|
| 27 |
"CONFIG_NAME = \"config\"\n",
|
| 28 |
+
"MODEL = \"v9-c\"\n",
|
| 29 |
"\n",
|
| 30 |
"DEVICE = 'cuda:0'\n",
|
| 31 |
"CLASS_NUM = 80\n",
|
|
|
|
| 32 |
"IMAGE_PATH = '../demo/images/inference/image.png'\n",
|
| 33 |
"\n",
|
| 34 |
"custom_logger()\n",
|
| 35 |
+
"device = torch.device(DEVICE)"
|
|
|
|
| 36 |
]
|
| 37 |
},
|
| 38 |
{
|
|
|
|
| 42 |
"outputs": [],
|
| 43 |
"source": [
|
| 44 |
"with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
|
| 45 |
+
" cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\", f\"model={MODEL}\"])\n",
|
| 46 |
+
" model = create_model(cfg.model, class_num=CLASS_NUM).to(device)\n",
|
| 47 |
" transform = AugmentationComposer([], cfg.image_size)\n",
|
| 48 |
" vec2box = Vec2Box(model, cfg.image_size, device)"
|
| 49 |
]
|
|
|
|
| 54 |
"metadata": {},
|
| 55 |
"outputs": [],
|
| 56 |
"source": [
|
| 57 |
+
"pil_image = Image.open(IMAGE_PATH)\n",
|
| 58 |
+
"image, bbox, rev_tensor = transform(pil_image)\n",
|
| 59 |
+
"image = image.to(device)[None]\n",
|
| 60 |
+
"rev_tensor = rev_tensor.to(device)"
|
| 61 |
]
|
| 62 |
},
|
| 63 |
{
|
|
|
|
| 68 |
"source": [
|
| 69 |
"with torch.no_grad():\n",
|
| 70 |
" predict = model(image)\n",
|
| 71 |
+
" pred_class, _, pred_bbox = vec2box(predict[\"Main\"])\n",
|
| 72 |
"\n",
|
| 73 |
+
"pred_bbox = (pred_bbox / rev_tensor[0] - rev_tensor[None, None, 1:]) \n",
|
| 74 |
+
"pred_bbox = bbox_nms(pred_class, pred_bbox, cfg.task.nms)\n",
|
| 75 |
+
"draw_bboxes(pil_image, pred_bbox, idx2label=cfg.class_list)"
|
| 76 |
]
|
| 77 |
},
|
| 78 |
{
|
examples/notebook_smallobject.ipynb
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"%load_ext autoreload\n",
|
| 10 |
+
"%autoreload 2"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"import sys\n",
|
| 20 |
+
"from pathlib import Path\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"import torch\n",
|
| 23 |
+
"from hydra import compose, initialize\n",
|
| 24 |
+
"from PIL import Image \n",
|
| 25 |
+
"from einops import rearrange\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"# Ensure that the necessary repository is cloned and installed. You may need to run: \n",
|
| 28 |
+
"# git clone [email protected]:WongKinYiu/YOLO.git\n",
|
| 29 |
+
"# cd YOLO \n",
|
| 30 |
+
"# pip install .\n",
|
| 31 |
+
"project_root = Path().resolve().parent\n",
|
| 32 |
+
"sys.path.append(str(project_root))\n",
|
| 33 |
+
"from yolo.config.config import NMSConfig\n",
|
| 34 |
+
"from yolo import AugmentationComposer, bbox_nms, Config, create_model, custom_logger, draw_bboxes, Vec2Box"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"CONFIG_PATH = \"../yolo/config\"\n",
|
| 44 |
+
"CONFIG_NAME = \"config\"\n",
|
| 45 |
+
"MODEL = \"v9-c\"\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"DEVICE = 'cuda:0'\n",
|
| 48 |
+
"CLASS_NUM = 80\n",
|
| 49 |
+
"IMAGE_PATH = '../image.png'\n",
|
| 50 |
+
"SLIDE = 4\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"custom_logger()\n",
|
| 53 |
+
"device = torch.device(DEVICE)"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": null,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
|
| 63 |
+
" cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\", f\"model={MODEL}\"])\n",
|
| 64 |
+
" model = create_model(cfg.model, class_num=CLASS_NUM).to(device)\n",
|
| 65 |
+
" transform = AugmentationComposer([], cfg.image_size)\n",
|
| 66 |
+
" vec2box = Vec2Box(model, cfg.image_size, device)"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"pil_image = Image.open(IMAGE_PATH)\n",
|
| 76 |
+
"image, bbox, rev_tensor = transform(pil_image)\n",
|
| 77 |
+
"image = image.to(device)[None]\n",
|
| 78 |
+
"rev_tensor = rev_tensor.to(device)"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"def slide_image(image, slide = 4, device = device):\n",
|
| 88 |
+
" up_image = torch.nn.functional.interpolate(image, scale_factor=slide)\n",
|
| 89 |
+
" image_list = [image]\n",
|
| 90 |
+
" shift_list = []\n",
|
| 91 |
+
" *_, w, h = up_image.shape\n",
|
| 92 |
+
" for x_slide in range(slide):\n",
|
| 93 |
+
" for y_slide in range(slide):\n",
|
| 94 |
+
" left_w, right_w = w // slide * x_slide, w // slide * (x_slide + 1)\n",
|
| 95 |
+
" left_h, right_h = h // slide * y_slide, h // slide * (y_slide + 1)\n",
|
| 96 |
+
" slide_image = up_image[:, :, left_w: right_w, left_h: right_h]\n",
|
| 97 |
+
" image_list.append(slide_image)\n",
|
| 98 |
+
" shift_list.append(torch.Tensor([left_h, left_w, left_h, left_w]))\n",
|
| 99 |
+
" total_image = torch.concat(image_list)\n",
|
| 100 |
+
" total_shift = torch.stack(shift_list).to(device)\n",
|
| 101 |
+
"\n",
|
| 102 |
+
" return total_image, total_shift"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"with torch.no_grad():\n",
|
| 112 |
+
" total_image, total_shift = slide_image(image)\n",
|
| 113 |
+
" predict = model(total_image)\n",
|
| 114 |
+
" pred_class, _, pred_bbox = vec2box(predict[\"Main\"])\n",
|
| 115 |
+
"pred_bbox[1:] = (pred_bbox[1: ] + total_shift[:, None]) / SLIDE\n",
|
| 116 |
+
"pred_bbox = pred_bbox.view(1, -1, 4)\n",
|
| 117 |
+
"pred_class = pred_class.view(1, -1, 80)"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"pred_bbox = (pred_bbox / rev_tensor[0] - rev_tensor[None, None, 1:]) "
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": null,
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [],
|
| 134 |
+
"source": [
|
| 135 |
+
"predict_box = bbox_nms(pred_class, pred_bbox, NMSConfig(0.5, 0.5))\n",
|
| 136 |
+
"draw_bboxes(pil_image, predict_box, idx2label=cfg.class_list)"
|
| 137 |
+
]
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
"metadata": {
|
| 141 |
+
"kernelspec": {
|
| 142 |
+
"display_name": "yolomit",
|
| 143 |
+
"language": "python",
|
| 144 |
+
"name": "python3"
|
| 145 |
+
},
|
| 146 |
+
"language_info": {
|
| 147 |
+
"codemirror_mode": {
|
| 148 |
+
"name": "ipython",
|
| 149 |
+
"version": 3
|
| 150 |
+
},
|
| 151 |
+
"file_extension": ".py",
|
| 152 |
+
"mimetype": "text/x-python",
|
| 153 |
+
"name": "python",
|
| 154 |
+
"nbconvert_exporter": "python",
|
| 155 |
+
"pygments_lexer": "ipython3",
|
| 156 |
+
"version": "3.10.14"
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
"nbformat": 4,
|
| 160 |
+
"nbformat_minor": 2
|
| 161 |
+
}
|
yolo/model/yolo.py
CHANGED
|
@@ -119,7 +119,7 @@ class YOLO(nn.Module):
|
|
| 119 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|
| 120 |
|
| 121 |
|
| 122 |
-
def create_model(model_cfg: ModelConfig, weight_path: Union[bool, str], class_num: int = 80) -> YOLO:
|
| 123 |
"""Constructs and returns a model from a Dictionary configuration file.
|
| 124 |
|
| 125 |
Args:
|
|
|
|
| 119 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|
| 120 |
|
| 121 |
|
| 122 |
+
def create_model(model_cfg: ModelConfig, weight_path: Union[bool, str] = True, class_num: int = 80) -> YOLO:
|
| 123 |
"""Constructs and returns a model from a Dictionary configuration file.
|
| 124 |
|
| 125 |
Args:
|