import streamlit as st import pandas as pd import plotly.express as px from transformers import pipeline # Set the page layout for Streamlit st.set_page_config(layout="wide") # Initialize TAPAS pipeline for table-based question answering (multilingual) tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", device=0) # Assuming GPU is available, otherwise set device="cpu" # Title and Introduction st.title("Data Visualization App with TAPAS NLP Integration") st.markdown(""" This app allows you to upload a table (CSV or Excel) and ask questions to generate graphs visualizing the data. Using **TAPAS**, the app can interpret your questions and generate the corresponding graphs. ### Available Features: - **Scatter Plot**: Visualize relationships between two columns. - **Line Graph**: Visualize a single column over time. Upload your data and ask questions about the data to generate visualizations. """) # Language Selection language = st.selectbox( "Select the language of your question", ("English", "German", "French", "Spanish", "Italian", "Others") ) # File uploader in the sidebar file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) # File processing and question answering if file_name is None: st.markdown('

Please upload an excel or csv file

', unsafe_allow_html=True) else: try: # Check file type and handle reading accordingly if file_name.name.endswith('.csv'): df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed elif file_name.name.endswith('.xlsx'): df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files else: st.error("Unsupported file type") df = None if df is not None: # Show the original data with text columns intact st.write("Original Data:") st.write(df) # Display a sample of data for graph generation st.write("Sample data for graph generation:") st.write(df.head()) except Exception as e: st.error(f"Error reading file: {str(e)}") # User input for the question question = st.text_input(f'Ask your graph-related question in {language}') with st.spinner(): if st.button('Generate Graph'): try: # Ensure the question is a valid string if not question or not isinstance(question, str): st.error("Please enter a valid question in the form of text.") else: # Use TAPAS model to process the question result = tqa(table=df, query=question) # Display the raw output from TAPAS st.write("TAPAS Raw Output (Response):") st.write(result) # This will display the raw output from TAPAS # Optionally, you can output the raw output as plain text: st.text("Raw TAPAS Output (Plain Text):") st.text(str(result)) # This will display raw output as plain text # Check if TAPAS is returning the expected answer answer = result.get('answer', None) if answer: st.write(f"TAPAS Answer: {answer}") else: st.warning("TAPAS did not return a valid answer.") # Determine if the question relates to graph generation if 'between' in question.lower() and 'and' in question.lower(): # This is a request for a scatter plot (two columns) columns = question.split('between')[-1].split('and') columns = [col.strip() for col in columns] if len(columns) == 2 and all(col in df.columns for col in columns): # Prepare the data for Plotly (scatter plot) x_data = df[columns[0]].dropna() # Extract x column, drop NaN values y_data = df[columns[1]].dropna() # Extract y column, drop NaN values # Ensure x_data and y_data have the same length min_length = min(len(x_data), len(y_data)) x_data = x_data[:min_length] y_data = y_data[:min_length] # Create the scatter plot fig = px.scatter(x=x_data, y=y_data, title=f"Scatter Plot between {columns[0]} and {columns[1]}") st.plotly_chart(fig, use_container_width=True) st.success(f"Here is the scatter plot between '{columns[0]}' and '{columns[1]}'.") else: st.warning("Columns not found in the dataset or the question format is incorrect.") elif 'column' in question.lower(): # This is a request for a line graph (single column) column = question.split('of')[-1].strip() # Handle 'of' keyword if column in df.columns: # Prepare the data for Plotly (line graph) column_data = df[column].dropna() # Drop NaN values # Create the line plot fig = px.line(x=column_data.index, y=column_data, title=f"Graph of column '{column}'") st.plotly_chart(fig, use_container_width=True) st.success(f"Here is the graph of column '{column}'.") else: st.warning(f"Column '{column}' not found in the data.") else: st.warning("Please ask a valid graph-related question (e.g., 'make a graph between column1 and column2').") except Exception as e: st.warning(f"Error processing question or generating graph: {str(e)}")