Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import shutil
|
| 6 |
+
import tempfile
|
| 7 |
+
# Install ffmpeg and pydub for audio extraction from video if needed
|
| 8 |
+
!apt-get update -qq && apt-get install -qq -y ffmpeg
|
| 9 |
+
!pip install pydub -q
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from pydub import AudioSegment
|
| 13 |
+
|
| 14 |
+
# Initialize the transcription pipeline with a multilingual model
|
| 15 |
+
# Note: openai/whisper-large-v3 is a very large model and might cause OutOfMemoryError
|
| 16 |
+
try:
|
| 17 |
+
print("π Loading multilingual transcription pipeline with openai/whisper-large-v3...")
|
| 18 |
+
transcriber = pipeline(
|
| 19 |
+
"automatic-speech-recognition",
|
| 20 |
+
model="openai/whisper-large-v3",
|
| 21 |
+
return_timestamps=True, # Needed for long audio
|
| 22 |
+
device_map="auto" # Automatically chooses device
|
| 23 |
+
)
|
| 24 |
+
print("β
Multilingual transcription pipeline loaded")
|
| 25 |
+
|
| 26 |
+
# Function to handle file upload, extract audio if necessary, and transcribe
|
| 27 |
+
def handle_upload_and_transcribe(file_obj):
|
| 28 |
+
"""Handles uploaded file (audio or video), extracts audio, and transcribes."""
|
| 29 |
+
if file_obj is None:
|
| 30 |
+
return "Please upload an audio or video file."
|
| 31 |
+
|
| 32 |
+
input_path = file_obj # file_obj is already the file path string
|
| 33 |
+
output_audio_path = None
|
| 34 |
+
temp_dir = None # Initialize temp_dir to None
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
# Check if the file is likely a video based on extension (a simple heuristic)
|
| 38 |
+
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.webm']
|
| 39 |
+
is_video = any(input_path.lower().endswith(ext) for ext in video_extensions)
|
| 40 |
+
|
| 41 |
+
if is_video:
|
| 42 |
+
print(f"π¬ Detected video file: {input_path}. Extracting audio...")
|
| 43 |
+
# Use pydub and ffmpeg to extract audio
|
| 44 |
+
audio = AudioSegment.from_file(input_path)
|
| 45 |
+
# Create a temporary file for the extracted audio
|
| 46 |
+
temp_dir = tempfile.mkdtemp()
|
| 47 |
+
output_audio_path = os.path.join(temp_dir, "extracted_audio.wav")
|
| 48 |
+
audio.export(output_audio_path, format="wav")
|
| 49 |
+
print(f"π Audio extracted to: {output_audio_path}")
|
| 50 |
+
audio_source_path = output_audio_path
|
| 51 |
+
else:
|
| 52 |
+
# Assume it's an audio file, use the original path
|
| 53 |
+
print(f"π΅ Detected audio file: {input_path}. Using directly for transcription.")
|
| 54 |
+
audio_source_path = input_path
|
| 55 |
+
|
| 56 |
+
# Now transcribe the audio source path
|
| 57 |
+
print(f" transcribe {audio_source_path}...")
|
| 58 |
+
transcription = transcriber(audio_source_path)
|
| 59 |
+
|
| 60 |
+
# Clean up temporary directory if audio was extracted and temp_dir was created
|
| 61 |
+
if temp_dir and os.path.exists(temp_dir):
|
| 62 |
+
shutil.rmtree(temp_dir)
|
| 63 |
+
print(f"ποΈ Cleaned up temporary directory {temp_dir}")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# The output format depends on return_timestamps. If True, it's a dict with 'text'.
|
| 67 |
+
if isinstance(transcription, dict) and 'text' in transcription:
|
| 68 |
+
return transcription['text']
|
| 69 |
+
elif isinstance(transcription, list) and transcription:
|
| 70 |
+
# Handle cases where output might be a list of dicts (e.g., without timestamps)
|
| 71 |
+
return transcription[0].get('text', str(transcription)) # Return text from first item or string representation
|
| 72 |
+
else:
|
| 73 |
+
return str(transcription) # Return string representation if format is unexpected
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
# Clean up temporary directory in case of error during transcription
|
| 77 |
+
if temp_dir and os.path.exists(temp_dir):
|
| 78 |
+
shutil.rmtree(temp_dir)
|
| 79 |
+
print(f"ποΈ Cleaned up temporary directory {temp_dir} after error")
|
| 80 |
+
return f"β Processing or Transcription failed: {e}"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Create the Gradio interface
|
| 84 |
+
print("π Creating Gradio interface...")
|
| 85 |
+
# Use gr.File for broader input type support, although gr.Audio often handles videos too
|
| 86 |
+
# gr.Audio(type="filepath") might be sufficient if ffmpeg handles the format
|
| 87 |
+
# Let's stick to gr.Audio with filepath type as it often works with ffmpeg installed
|
| 88 |
+
interface = gr.Interface(
|
| 89 |
+
fn=handle_upload_and_transcribe,
|
| 90 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio or Video File"),
|
| 91 |
+
outputs=gr.Textbox(label="Transcription"),
|
| 92 |
+
title="Multilingual Audio/Video Transcription",
|
| 93 |
+
description="Upload an audio (.mp3, .wav, .m4a, etc.) or video (.mp4, .avi, etc.) file to get its transcription."
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Launch the interface
|
| 97 |
+
print("Starting Gradio interface...")
|
| 98 |
+
interface.launch(debug=True) # Set debug=True for more detailed error messages
|
| 99 |
+
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print(f"β Error initializing the transcription pipeline or Gradio interface: {e}")
|
| 102 |
+
print("Please check the model name and available resources.")
|
| 103 |
+
display({"error": f"Initialization failed: {e}"})
|