File size: 13,638 Bytes
714e085 bfb9a2f 714e085 0ff5466 714e085 bfb9a2f 714e085 bfb9a2f 714e085 bfb9a2f 714e085 bfb9a2f 714e085 bfb9a2f 714e085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from datetime import datetime, date
import numpy as np
from functools import lru_cache
# Load the dataset
@lru_cache(maxsize=1)
def load_trending_models_data():
"""Load the trending models dataset from Hugging Face"""
try:
print("Loading dataset from hf-azure-internal/trending-models-analysis...")
# First, check what splits are available
dataset_info = load_dataset("hf-azure-internal/trending-models-analysis")
print(f"Available splits: {list(dataset_info.keys())}")
# Try to load the correct split
if "models" in dataset_info:
print("Using 'models' split...")
dataset = dataset_info["models"]
elif "train" in dataset_info:
print("Using 'train' split...")
dataset = dataset_info["train"]
else:
# Fallback to first available split
split_name = list(dataset_info.keys())[0]
print(f"Using '{split_name}' split...")
dataset = dataset_info[split_name]
print(f"Dataset loaded. Type: {type(dataset)}")
df = dataset.to_pandas()
print(f"Converted to pandas. Shape: {df.shape}")
print(f"Columns: {list(df.columns)}")
# Convert collected_at to datetime if it's not already
if 'collected_at' in df.columns:
print(f"collected_at column found. Sample values:")
print(df['collected_at'].head(3).tolist())
df['collected_at'] = pd.to_datetime(df['collected_at'])
print(f"After conversion, dtype: {df['collected_at'].dtype}")
# Show unique dates
unique_dates = df['collected_at'].dt.date.unique()
print(f"Unique dates in dataset: {sorted(unique_dates)}")
else:
print("No 'collected_at' column found!")
return df
except Exception as e:
print(f"Error loading dataset: {e}")
# Return empty dataframe with expected columns for development
return pd.DataFrame(columns=[
'id', 'trending_rank', 'author', 'tags', 'license', 'library_name',
'gated', 'task', 'is_in_catalog', 'is_custom_code', 'is_excluded_org',
'is_supported_license', 'is_supported_library', 'is_safetensors',
'is_supported_task', 'is_securely_scanned', 'collected_at', 'model_status'
])
def clear_data_cache():
"""Clear the cached dataset to force a reload"""
load_trending_models_data.cache_clear()
print("Dataset cache cleared!")
def load_trending_models_data_fresh():
"""Load fresh data by clearing cache first"""
clear_data_cache()
return load_trending_models_data()
def get_status_emoji(value):
"""Convert boolean values to emoji indicators"""
if pd.isna(value):
return "β"
return "π’" if value else "π΄"
def get_negative_status_emoji(value):
"""Convert boolean values to emoji indicators where True is bad (red) and False is good (green)"""
if pd.isna(value):
return "β"
return "π΄" if value else "π’"
def get_status_with_text(value, text_value=None):
"""Convert boolean values to emoji indicators with optional text"""
if pd.isna(value):
emoji = "β"
else:
emoji = "π’" if value else "π΄"
# Handle arrays and None values properly
if text_value is not None:
# Convert arrays to scalar if needed
if hasattr(text_value, '__len__') and hasattr(text_value, 'size'):
# It's likely a numpy array or similar
if text_value.size == 0:
text_value = None
elif text_value.size == 1:
text_value = text_value.item() if hasattr(text_value, 'item') else text_value[0]
# Now check if we have a valid text value
if text_value is not None and not pd.isna(text_value) and str(text_value).strip():
return f"{emoji} {text_value}"
return emoji
def get_negative_status_with_text(value, text_value=None):
"""Convert boolean values to emoji indicators where True is bad (red) and False is good (green), with optional text"""
if pd.isna(value):
emoji = "β"
else:
emoji = "π΄" if value else "π’"
if text_value and not pd.isna(text_value):
return f"{emoji} {text_value}"
else:
return emoji
def create_clickable_model_id(model_id):
"""Convert model ID to clickable link"""
if pd.isna(model_id) or not model_id:
return ""
return f'<a href="https://hf.co/{model_id}" target="_blank" style="text-decoration: underline; color: #0066cc;">{model_id}</a>'
def get_status_with_color(status):
"""Add color coding to status values"""
if pd.isna(status) or not status:
return ""
status_lower = str(status).lower()
if status_lower == "to add":
return f'<span style="color: #0066ff; font-weight: bold; background-color: #e6f3ff; padding: 2px 6px; border-radius: 4px;">{status}</span>'
elif status_lower == "added":
return f'<span style="color: #00aa00; font-weight: bold; background-color: #e6ffe6; padding: 2px 6px; border-radius: 4px;">{status}</span>'
elif status_lower == "blocked":
return f'<span style="color: #cc0000; font-weight: bold; background-color: #ffe6e6; padding: 2px 6px; border-radius: 4px;">{status}</span>'
else:
return f'<span style="padding: 2px 6px; border-radius: 4px;">{status}</span>'
def create_display_dataframe(df, selected_date):
"""Create a DataFrame for display"""
if df.empty:
return pd.DataFrame()
# Filter by date if specified
filtered_df = df.copy()
if selected_date and 'collected_at' in df.columns:
# Convert selected_date to just the date part for comparison
if isinstance(selected_date, str):
target_date = pd.to_datetime(selected_date).date()
elif hasattr(selected_date, 'date'):
target_date = selected_date.date()
else:
target_date = selected_date
# Filter by comparing just the date parts (ignoring time)
filtered_df = filtered_df[filtered_df['collected_at'].dt.date == target_date]
if filtered_df.empty:
return pd.DataFrame()
# Create display dataframe with key columns
display_df = filtered_df[['trending_rank', 'id', 'is_custom_code', 'is_excluded_org',
'is_supported_license', 'is_supported_library', 'is_safetensors',
'is_supported_task', 'is_securely_scanned', 'model_status']].copy()
# Convert boolean columns to emojis for better display
display_df['Custom Code'] = filtered_df['is_custom_code'].apply(get_negative_status_emoji)
display_df['Excluded Org'] = filtered_df.apply(lambda row: get_negative_status_with_text(row['is_excluded_org'], row.get('author')), axis=1)
display_df['Supported License'] = filtered_df.apply(lambda row: get_status_with_text(row['is_supported_license'], row.get('license')), axis=1)
display_df['Supported Library'] = filtered_df.apply(lambda row: get_status_with_text(row['is_supported_library'], row.get('library_name')), axis=1)
display_df['Safetensors'] = filtered_df['is_safetensors'].apply(get_status_emoji)
display_df['Supported Task'] = filtered_df.apply(lambda row: get_status_with_text(row['is_supported_task'], row.get('task')), axis=1)
display_df['Security Check'] = filtered_df['is_securely_scanned'].apply(get_status_emoji)
# Create clickable model IDs and colored status
display_df['Model ID'] = filtered_df['id'].apply(create_clickable_model_id)
display_df['Status'] = filtered_df['model_status'].apply(get_status_with_color)
# Rename and reorder columns
display_df = display_df.rename(columns={
'trending_rank': 'Rank'
})
# Select final columns for display
final_columns = ['Rank', 'Model ID', 'Custom Code', 'Excluded Org', 'Supported License',
'Supported Library', 'Safetensors', 'Supported Task', 'Security Check', 'Status']
display_df = display_df[final_columns]
# Sort by rank and reset index to get clean row indices
display_df = display_df.sort_values('Rank').reset_index(drop=True)
return display_df
def update_dashboard(selected_date, use_fresh_data=False):
"""Update the dashboard based on user selections"""
if use_fresh_data:
df = load_trending_models_data_fresh()
else:
df = load_trending_models_data()
display_df = create_display_dataframe(df, selected_date)
return display_df
def get_available_dates():
"""Get list of available dates from the dataset"""
df = load_trending_models_data()
if df.empty or 'collected_at' not in df.columns:
return [], None, None
dates = df['collected_at'].dt.date.unique()
valid_dates = sorted([d for d in dates if pd.notna(d)], reverse=True)
if not valid_dates:
return [], None, None
return valid_dates, valid_dates[-1], valid_dates[0] # all_dates, min_date, max_date
def get_available_dates_fresh():
"""Get list of available dates from fresh dataset (clears cache first)"""
df = load_trending_models_data_fresh()
if df.empty or 'collected_at' not in df.columns:
return [], None, None
dates = df['collected_at'].dt.date.unique()
valid_dates = sorted([d for d in dates if pd.notna(d)], reverse=True)
if not valid_dates:
return [], None, None
return valid_dates, valid_dates[-1], valid_dates[0] # all_dates, min_date, max_date
# Create the Gradio interface
def create_interface():
# Custom CSS for enhanced styling
custom_css = """
.dataframe-container {
border-radius: 12px;
overflow: hidden;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.info-text {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 12px 16px;
border-radius: 8px;
text-align: center;
font-weight: 500;
margin: 8px 0;
}
"""
with gr.Blocks(title="Trending Models Dashboard", theme=gr.themes.Soft(), css=custom_css) as demo:
gr.Markdown("""
# Trending Models Support Dashboard
**Data Source:** [hf-azure-internal/trending-models-analysis](https://huggingface.co/datasets/hf-azure-internal/trending-models-analysis)
""")
# Get date information
available_dates, min_date, max_date = get_available_dates()
# Controls row at the top
with gr.Row():
with gr.Column(scale=1):
date_picker = gr.Textbox(
value=str(max_date) if max_date else "",
label="π
Date Selection",
placeholder="2025-01-21",
info="Enter date in YYYY-MM-DD format"
)
with gr.Column(scale=1):
refresh_btn = gr.Button("π Refresh Data", variant="primary", size="lg")
# Main dataframe display
with gr.Row():
dataframe_display = gr.Dataframe(
label="π Trending Models Overview",
interactive=False,
wrap=True,
elem_classes=["dataframe-container"],
datatype=["number", "html", "str", "str", "str", "str", "str", "str", "str", "html"]
)
# Event handlers
def update_dashboard_wrapper(selected_date_text):
"""Wrapper to handle the dashboard update"""
selected_date = None
if selected_date_text:
try:
selected_date = pd.to_datetime(selected_date_text).date()
except Exception as e:
print(f"Date conversion error: {e}, value: {selected_date_text}")
selected_date = None
return update_dashboard(selected_date)
# Wire up events
date_picker.change(
fn=update_dashboard_wrapper,
inputs=[date_picker],
outputs=[dataframe_display]
)
def refresh_data(selected_date_text):
"""Refresh data and update dashboard"""
print("Refreshing data - clearing cache and reloading dataset...")
available_dates, _, max_date = get_available_dates_fresh()
selected_date = max_date
if selected_date_text:
try:
selected_date = pd.to_datetime(selected_date_text).date()
except Exception as e:
print(f"Date conversion error in refresh: {e}, value: {selected_date_text}")
selected_date = max_date
display_df = update_dashboard(selected_date, use_fresh_data=True)
return (
str(max_date) if max_date else "",
display_df
)
refresh_btn.click(
fn=refresh_data,
inputs=[date_picker],
outputs=[date_picker, dataframe_display]
)
# Load initial data
demo.load(
fn=update_dashboard_wrapper,
inputs=[date_picker],
outputs=[dataframe_display]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch() |