OrgStats / app.py
yjernite's picture
yjernite HF Staff
Upload app.py
bbf45d0 verified
import json
import gradio as gr
import pandas as pd
import plotly.express as px
PIPELINE_TAGS = [
'text-generation',
'text-to-image',
'text-classification',
'text2text-generation',
'audio-to-audio',
'feature-extraction',
'image-classification',
'translation',
'reinforcement-learning',
'fill-mask',
'text-to-speech',
'automatic-speech-recognition',
'image-text-to-text',
'token-classification',
'sentence-similarity',
'question-answering',
'image-feature-extraction',
'summarization',
'zero-shot-image-classification',
'object-detection',
'image-segmentation',
'image-to-image',
'image-to-text',
'audio-classification',
'visual-question-answering',
'text-to-video',
'zero-shot-classification',
'depth-estimation',
'text-ranking',
'image-to-video',
'multiple-choice',
'unconditional-image-generation',
'video-classification',
'text-to-audio',
'time-series-forecasting',
'any-to-any',
'video-text-to-text',
'table-question-answering',
]
def is_audio_speech(repo_dct):
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
(repo_dct.get("tags", None) and any("audio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("speech" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_music(repo_dct):
res = (repo_dct.get("tags", None) and any("music" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_robotics(repo_dct):
res = (repo_dct.get("tags", None) and any("robot" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_biomed(repo_dct):
res = (repo_dct.get("tags", None) and any("bio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
(repo_dct.get("tags", None) and any("medic" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_timeseries(repo_dct):
res = (repo_dct.get("tags", None) and any("series" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_science(repo_dct):
res = (repo_dct.get("tags", None) and any("science" in tag.lower() and not "bigscience" in tag for tag in repo_dct.get("tags", [])))
return res
def is_video(repo_dct):
res = (repo_dct.get("tags", None) and any("video" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_image(repo_dct):
res = (repo_dct.get("tags", None) and any("image" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
def is_text(repo_dct):
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
return res
TAG_FILTER_FUNCS = {
"Audio & Speech": is_audio_speech,
"Time series": is_timeseries,
"Robotics": is_robotics,
"Music": is_music,
"Video": is_video,
"Images": is_image,
"Text": is_text,
"Biomedical": is_biomed,
"Sciences": is_science,
}
def make_org_stats(repo_type, count_by, org_stats, top_k=20, filter_func=None):
assert count_by in ["likes", "downloads", "downloads_all"]
assert repo_type in ["all", "datasets", "models"]
repos = ["datasets", "models"] if repo_type == "all" else [repo_type]
if filter_func is None:
filter_func = lambda x: True
sorted_stats = sorted(
[(
author,
sum(dct[count_by] for dct in author_dct[repo] if filter_func(dct))
) for repo in repos for author, author_dct in org_stats.items()],
key=lambda x:x[1],
reverse=True,
)
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
total_st = sum(st for o, st in res)
res_plot_df = []
for org, st in res:
if org == "Others...":
res_plot_df += [("Others...", "other", st * 100 / total_st)]
else:
for repo in repos:
for dct in org_stats[org][repo]:
if filter_func(dct):
res_plot_df += [(org, dct["id"], dct[count_by] * 100 / total_st)]
return ([(o, 100 * st / total_st) for o, st in res if st > 0], res_plot_df)
def make_figure(count_by, repo_type, org_stats, tag_filter=None, pipeline_filter=None):
assert count_by in ["downloads", "likes", "downloads_all"]
assert repo_type in ["all", "models", "datasets"]
assert tag_filter is None or pipeline_filter is None
filter_func = None
if tag_filter:
filter_func = TAG_FILTER_FUNCS[tag_filter]
if pipeline_filter:
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
_, res_plot_df = make_org_stats(repo_type, count_by, org_stats, top_k=25, filter_func=filter_func)
df = pd.DataFrame(
dict(
organizations=[o for o, _, _ in res_plot_df],
repo=[r for _, r, _ in res_plot_df],
stats=[s for _, _, s in res_plot_df],
)
)
df[repo_type] = repo_type # in order to have a single root node
fig = px.treemap(df, path=[repo_type, 'organizations', 'repo'], values='stats')
fig.update_layout(
treemapcolorway = ["pink" for _ in range(len(res_plot_df))],
margin = dict(t=50, l=25, r=25, b=25)
)
return fig
with gr.Blocks() as demo:
org_stats_data = gr.State(value=None) # To store loaded data
with gr.Row():
gr.Markdown("""
## Hugging Face Organization Stats
This app shows how different organizations are contributing to different aspects of the open AI ecosystem.
Use the dropdowns on the left to select repository types, metrics, and optionally tags representing topics or modalities of interest.
""")
with gr.Row():
with gr.Column(scale=1):
repo_type_dropdown = gr.Dropdown(
label="Repository Type",
choices=["all", "models", "datasets"],
value="all"
)
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=["downloads", "likes", "downloads_all"],
value="downloads"
)
filter_choice_radio = gr.Radio(
label="Filter by",
choices=["None", "Tag Filter", "Pipeline Filter"],
value="None"
)
tag_filter_dropdown = gr.Dropdown(
label="Select Tag",
choices=list(TAG_FILTER_FUNCS.keys()),
value=None,
visible=False
)
pipeline_filter_dropdown = gr.Dropdown(
label="Select Pipeline Tag",
choices=PIPELINE_TAGS,
value=None,
visible=False
)
generate_plot_button = gr.Button("Generate Plot")
with gr.Column(scale=3):
plot_output = gr.Plot()
def generate_plot_on_click(repo_type, count_by, filter_choice, tag_filter, pipeline_filter, data):
# Print the current state of the input variables
print(f"Generating plot with the following inputs:")
print(f" Repository Type: {repo_type}")
print(f" Metric (Count By): {count_by}")
print(f" Filter Choice: {filter_choice}")
if filter_choice == "Tag Filter":
print(f" Tag Filter: {tag_filter}")
elif filter_choice == "Pipeline Filter":
print(f" Pipeline Filter: {pipeline_filter}")
if data is None:
print("Error: Data not loaded yet.")
return None
selected_tag_filter = None
selected_pipeline_filter = None
if filter_choice == "Tag Filter":
selected_tag_filter = tag_filter
elif filter_choice == "Pipeline Filter":
selected_pipeline_filter = pipeline_filter
fig = make_figure(
count_by=count_by,
repo_type=repo_type,
org_stats=data,
tag_filter=selected_tag_filter,
pipeline_filter=selected_pipeline_filter
)
return fig
def update_filter_visibility(filter_choice):
if filter_choice == "Tag Filter":
return gr.update(visible=True), gr.update(visible=False)
elif filter_choice == "Pipeline Filter":
return gr.update(visible=False), gr.update(visible=True)
else: # "None"
return gr.update(visible=False), gr.update(visible=False)
filter_choice_radio.change(
fn=update_filter_visibility,
inputs=[filter_choice_radio],
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
)
# Load data once at startup
def load_org_data():
print("Loading organization statistics data...")
loaded_org_stats = json.load(open("org_to_artifacts_2l_stats.json"))
print("Data loaded successfully.")
return loaded_org_stats
demo.load(
fn=load_org_data,
inputs=[], # No inputs needed to just load data
outputs=[org_stats_data] # Only output to the state
)
# Button click event to generate plot
generate_plot_button.click(
fn=generate_plot_on_click,
inputs=[
repo_type_dropdown,
count_by_dropdown,
filter_choice_radio,
tag_filter_dropdown,
pipeline_filter_dropdown,
org_stats_data
],
outputs=[plot_output]
)
if __name__ == "__main__":
# org_stats = json.load(open("org_to_artifacts_2l_stats.json")) # Data loading handled by demo.load
demo.launch()