Spaces:
Sleeping
Sleeping
Create HGapp.py
Browse files
HGapp.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the pre-trained question-answering model from Hugging Face
|
5 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
6 |
+
|
7 |
+
# Define the function that takes inputs and returns the answer
|
8 |
+
def answer_question(context, question):
|
9 |
+
result = qa_pipeline(question=question, context=context)
|
10 |
+
return result['answer']
|
11 |
+
|
12 |
+
# Create the Gradio interface
|
13 |
+
interface = gr.Interface(
|
14 |
+
fn=answer_question,
|
15 |
+
inputs=[gr.inputs.Textbox(lines=7, label="Context (Enter the passage)"), gr.inputs.Textbox(lines=2, label="Question")],
|
16 |
+
outputs="text",
|
17 |
+
title="Question Answering Model",
|
18 |
+
description="Ask a question based on the given context.",
|
19 |
+
)
|
20 |
+
|
21 |
+
# Launch the interface
|
22 |
+
interface.launch()
|