import gradio as gr from transformers import pipeline # Try loading the model with a fallback for any loading errors try: print("Loading the model...") qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") print("Model loaded successfully.") except Exception as e: # Print error message for debugging purposes print(f"Error loading model: {e}") qa_pipeline = None # Define the function that takes inputs and returns the answer def answer_question(context, question): if qa_pipeline is None: return "Error: Model not loaded." result = qa_pipeline(question=question, context=context) return result['answer'] # Create the Gradio interface interface = gr.Interface( fn=answer_question, inputs=[gr.Textbox(lines=7, label="Context (Enter the passage)"), gr.Textbox(lines=2, label="Question")], outputs="text", title="Question Answering Model", description="Ask a question based on the given context.", ) # Print a message before launching the app to confirm it's starting print("Launching the Gradio interface...") # Launch the interface interface.launch()