Create BanglaRAG/bangla_rag_pipeline.py
Browse files- BanglaRAG/bangla_rag_pipeline.py +303 -0
BanglaRAG/bangla_rag_pipeline.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
pipeline,
|
7 |
+
GenerationConfig,
|
8 |
+
BitsAndBytesConfig,
|
9 |
+
)
|
10 |
+
from langchain_core.prompts import PromptTemplate
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain_community.vectorstores import Chroma
|
14 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
15 |
+
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
16 |
+
from langchain_core.output_parsers import StrOutputParser
|
17 |
+
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
|
18 |
+
from rich import print as rprint
|
19 |
+
from rich.panel import Panel
|
20 |
+
from tqdm import tqdm
|
21 |
+
import warnings
|
22 |
+
import re
|
23 |
+
|
24 |
+
warnings.filterwarnings("ignore")
|
25 |
+
|
26 |
+
class BanglaRAGChain:
|
27 |
+
"""
|
28 |
+
Bangla Retrieval-Augmented Generation (RAG) Chain for question answering.
|
29 |
+
|
30 |
+
This class uses a HuggingFace/local language model for text generation, a Chroma vector database for
|
31 |
+
document retrieval, and a custom prompt template to create a RAG chain that can generate
|
32 |
+
responses to user queries in Bengali.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self):
|
36 |
+
"""Initializes the BanglaRAGChain with default parameters."""
|
37 |
+
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
self.chat_model_id = None
|
39 |
+
self.embed_model_id = None
|
40 |
+
self.k = 4
|
41 |
+
self.max_new_tokens = 1024
|
42 |
+
self.chunk_size = 500
|
43 |
+
self.chunk_overlap = 150
|
44 |
+
self.text_path = ""
|
45 |
+
self.quantization = None
|
46 |
+
self.temperature = 0.9
|
47 |
+
self.top_p = 0.6
|
48 |
+
self.top_k = 50
|
49 |
+
self._text_content = None
|
50 |
+
self.hf_token = None
|
51 |
+
|
52 |
+
self.tokenizer = None
|
53 |
+
self.chat_model = None
|
54 |
+
self._llm = None
|
55 |
+
self._retriever = None
|
56 |
+
self._db = None
|
57 |
+
self._documents = []
|
58 |
+
self._chain = None
|
59 |
+
|
60 |
+
def load(
|
61 |
+
self,
|
62 |
+
chat_model_id,
|
63 |
+
embed_model_id,
|
64 |
+
text_path,
|
65 |
+
quantization,
|
66 |
+
k=4,
|
67 |
+
top_k=2,
|
68 |
+
top_p=0.6,
|
69 |
+
max_new_tokens=1024,
|
70 |
+
temperature=0.6,
|
71 |
+
chunk_size=500,
|
72 |
+
chunk_overlap=150,
|
73 |
+
hf_token=None,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
Loads the required models and data for the RAG chain.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
chat_model_id (str): The Hugging Face model ID for the chat model.
|
80 |
+
embed_model_id (str): The Hugging Face model ID for the embedding model.
|
81 |
+
text_path (str): Path to the text file to be indexed.
|
82 |
+
quantization (bool): Whether to quantize the model or not.
|
83 |
+
k (int): The number of documents to retrieve.
|
84 |
+
top_k (int): The top_k parameter for the generation configuration.
|
85 |
+
top_p (float): The top_p parameter for the generation configuration.
|
86 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
87 |
+
temperature (float): The temperature parameter for the generation configuration.
|
88 |
+
chunk_size (int): The chunk size for text splitting.
|
89 |
+
chunk_overlap (int): The chunk overlap for text splitting.
|
90 |
+
hf_token (str): The Hugging Face token for authentication.
|
91 |
+
"""
|
92 |
+
self.chat_model_id = chat_model_id
|
93 |
+
self.embed_model_id = embed_model_id
|
94 |
+
self.k = k
|
95 |
+
self.top_k = top_k
|
96 |
+
self.top_p = top_p
|
97 |
+
self.temperature = temperature
|
98 |
+
self.chunk_size = chunk_size
|
99 |
+
self.chunk_overlap = chunk_overlap
|
100 |
+
self.text_path = text_path
|
101 |
+
self.quantization = quantization
|
102 |
+
self.max_new_tokens = max_new_tokens
|
103 |
+
self.hf_token = hf_token
|
104 |
+
|
105 |
+
if self.hf_token is not None:
|
106 |
+
os.environ["HF_TOKEN"] = str(self.hf_token)
|
107 |
+
|
108 |
+
rprint(Panel("[bold green]Loading chat models...", expand=False))
|
109 |
+
self._load_models()
|
110 |
+
|
111 |
+
rprint(Panel("[bold green]Creating document...", expand=False))
|
112 |
+
self._create_document()
|
113 |
+
|
114 |
+
rprint(Panel("[bold green]Updating Chroma database...", expand=False))
|
115 |
+
self._update_chroma_db()
|
116 |
+
|
117 |
+
rprint(Panel("[bold green]Initializing retriever...", expand=False))
|
118 |
+
self._get_retriever()
|
119 |
+
|
120 |
+
rprint(Panel("[bold green]Initializing LLM...", expand=False))
|
121 |
+
self._get_llm()
|
122 |
+
rprint(Panel("[bold green]Creating chain...", expand=False))
|
123 |
+
self._create_chain()
|
124 |
+
|
125 |
+
def _load_models(self):
|
126 |
+
"""Loads the chat model and tokenizer."""
|
127 |
+
try:
|
128 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.chat_model_id)
|
129 |
+
bnb_config = None
|
130 |
+
if self.quantization:
|
131 |
+
bnb_config = BitsAndBytesConfig(
|
132 |
+
load_in_4bit=True,
|
133 |
+
bnb_4bit_use_double_quant=True,
|
134 |
+
bnb_4bit_quant_type="nf4",
|
135 |
+
bnb_4bit_compute_dtype=torch.float16,
|
136 |
+
)
|
137 |
+
rprint(Panel("[bold green]Applying 4bit quantization...", expand=False))
|
138 |
+
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
139 |
+
self.chat_model_id,
|
140 |
+
torch_dtype=torch.float16,
|
141 |
+
low_cpu_mem_usage=True,
|
142 |
+
quantization_config=bnb_config,
|
143 |
+
device_map="auto",
|
144 |
+
# cache_dir=CACHE_DIR, # Removed cache_dir to use default caching
|
145 |
+
)
|
146 |
+
rprint(Panel("[bold green]Applied 4bit quantization successfully", expand=False))
|
147 |
+
|
148 |
+
else:
|
149 |
+
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
150 |
+
self.chat_model_id,
|
151 |
+
torch_dtype=torch.float16,
|
152 |
+
low_cpu_mem_usage=True,
|
153 |
+
device_map="auto",
|
154 |
+
# cache_dir=CACHE_DIR, # Removed cache_dir to use default caching
|
155 |
+
)
|
156 |
+
rprint(Panel("[bold green]Chat Model loaded successfully!", expand=False))
|
157 |
+
except Exception as e:
|
158 |
+
rprint(Panel(f"[red]Error loading chat model: {e}", expand=False))
|
159 |
+
|
160 |
+
def _create_document(self):
|
161 |
+
"""Splits the input text into chunks using RecursiveCharacterTextSplitter."""
|
162 |
+
try:
|
163 |
+
with open(self.text_path, "r", encoding="utf-8") as file:
|
164 |
+
self._text_content = file.read()
|
165 |
+
character_splitter = RecursiveCharacterTextSplitter(
|
166 |
+
separators=["!", "?", "।"],
|
167 |
+
chunk_size=self.chunk_size,
|
168 |
+
chunk_overlap=self.chunk_overlap,
|
169 |
+
)
|
170 |
+
self._documents = list(
|
171 |
+
tqdm(
|
172 |
+
character_splitter.split_text(self._text_content),
|
173 |
+
desc="Chunking text",
|
174 |
+
)
|
175 |
+
)
|
176 |
+
print(f"Number of chunks: {len(self._documents)}")
|
177 |
+
if False:
|
178 |
+
for i, chunk in enumerate(self._documents):
|
179 |
+
if i > 5:
|
180 |
+
break
|
181 |
+
print(f"Chunk {i}: {chunk}")
|
182 |
+
rprint(Panel("[bold green]Document created successfully!", expand=False))
|
183 |
+
except Exception as e:
|
184 |
+
rprint(Panel(f"[red]Chunking failed: {e}", expand=False))
|
185 |
+
|
186 |
+
def _update_chroma_db(self):
|
187 |
+
"""Updates the Chroma vector database with the text chunks."""
|
188 |
+
try:
|
189 |
+
try:
|
190 |
+
rprint(Panel(f"[bold green]Loading embedding model...",expand=False))
|
191 |
+
model_kwargs = {"device": self._device}
|
192 |
+
embeddings = HuggingFaceEmbeddings(
|
193 |
+
model_name=self.embed_model_id, model_kwargs=model_kwargs
|
194 |
+
)
|
195 |
+
rprint(Panel(f"[bold green]Loaded embedding model successfully!", expand=False))
|
196 |
+
except Exception as e:
|
197 |
+
rprint(Panel("f[red]embedding model loading failed: {e}", expand=False))
|
198 |
+
|
199 |
+
|
200 |
+
self._db = Chroma.from_texts(texts=self._documents, embedding=embeddings)
|
201 |
+
rprint(
|
202 |
+
Panel("[bold green]Chroma database updated successfully!", expand=False)
|
203 |
+
)
|
204 |
+
except Exception as e:
|
205 |
+
rprint(Panel(f"[red]Vector DB initialization failed: {e}", expand=False))
|
206 |
+
|
207 |
+
def _create_chain(self):
|
208 |
+
"""Creates the retrieval-augmented generation (RAG) chain."""
|
209 |
+
template = """Below is an instruction in Bengali language that describes a task, paired with an input also in Bengali language that provides further context. Write a response in Bengali that appropriately completes the request.
|
210 |
+
|
211 |
+
### Instruction:
|
212 |
+
{question}
|
213 |
+
|
214 |
+
### Input:
|
215 |
+
{context}
|
216 |
+
|
217 |
+
### Response:
|
218 |
+
"""
|
219 |
+
prompt_template = ChatPromptTemplate(
|
220 |
+
input_variables=["question", "context"],
|
221 |
+
output_parser=None,
|
222 |
+
partial_variables={},
|
223 |
+
messages=[
|
224 |
+
HumanMessagePromptTemplate(
|
225 |
+
prompt=PromptTemplate(
|
226 |
+
input_variables=["question", "context"],
|
227 |
+
output_parser=None,
|
228 |
+
partial_variables={},
|
229 |
+
template=template,
|
230 |
+
template_format="f-string",
|
231 |
+
validate_template=True,
|
232 |
+
),
|
233 |
+
additional_kwargs={},
|
234 |
+
)
|
235 |
+
],
|
236 |
+
)
|
237 |
+
|
238 |
+
try:
|
239 |
+
rag_chain_from_docs = (
|
240 |
+
RunnablePassthrough.assign(
|
241 |
+
context=lambda x: self._format_docs(x["context"])
|
242 |
+
)
|
243 |
+
| prompt_template
|
244 |
+
| self._llm
|
245 |
+
| StrOutputParser()
|
246 |
+
)
|
247 |
+
|
248 |
+
rag_chain_with_source = RunnableParallel(
|
249 |
+
{"context": self._retriever, "question": RunnablePassthrough()}
|
250 |
+
).assign(answer=rag_chain_from_docs)
|
251 |
+
|
252 |
+
self._chain = rag_chain_with_source
|
253 |
+
rprint(Panel("[bold green]Chain created successfully!", expand=False))
|
254 |
+
except Exception as e:
|
255 |
+
rprint(Panel(f"[red]Chain creation failed: {e}", expand=False))
|
256 |
+
|
257 |
+
def _get_retriever(self):
|
258 |
+
"""Creates a retriever for the vector database."""
|
259 |
+
self._retriever = self._db.as_retriever(search_kwargs={"k": self.k})
|
260 |
+
|
261 |
+
def _get_llm(self):
|
262 |
+
"""Initializes the language model using the Hugging Face pipeline."""
|
263 |
+
try:
|
264 |
+
pipe = pipeline(
|
265 |
+
"text-generation",
|
266 |
+
model=self.chat_model,
|
267 |
+
tokenizer=self.tokenizer,
|
268 |
+
device=self._device,
|
269 |
+
max_new_tokens=self.max_new_tokens,
|
270 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
271 |
+
do_sample=True,
|
272 |
+
temperature=self.temperature,
|
273 |
+
top_p=self.top_p,
|
274 |
+
top_k=self.top_k,
|
275 |
+
repetition_penalty=1.2,
|
276 |
+
torch_dtype=torch.float16,
|
277 |
+
)
|
278 |
+
|
279 |
+
self._llm = HuggingFacePipeline(pipeline=pipe)
|
280 |
+
rprint(Panel("[bold green]LLM initialized successfully!", expand=False))
|
281 |
+
except Exception as e:
|
282 |
+
rprint(Panel(f"[red]LLM initialization failed: {e}", expand=False))
|
283 |
+
|
284 |
+
def _format_docs(self, docs):
|
285 |
+
"""Formats the retrieved documents for the prompt."""
|
286 |
+
formatted_docs = "\n".join([re.sub(r"\s+", " ", doc) for doc in docs])
|
287 |
+
return formatted_docs
|
288 |
+
|
289 |
+
def query(self, prompt: str) -> str:
|
290 |
+
"""
|
291 |
+
Queries the RAG chain with a given prompt.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
prompt (str): The input prompt to query the RAG chain.
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
str: The generated response from the RAG chain.
|
298 |
+
"""
|
299 |
+
return self._chain.invoke({"question": prompt})
|
300 |
+
|
301 |
+
def __call__(self, prompt: str) -> str:
|
302 |
+
"""Alias for the query method."""
|
303 |
+
return self.query(prompt)
|