Update BanglaRAG/bangla_rag_pipeline.py
Browse files- BanglaRAG/bangla_rag_pipeline.py +18 -61
BanglaRAG/bangla_rag_pipeline.py
CHANGED
|
@@ -13,100 +13,57 @@ from langchain_community.vectorstores import Chroma
|
|
| 13 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 14 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 15 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
| 16 |
import warnings
|
| 17 |
|
| 18 |
warnings.filterwarnings("ignore")
|
| 19 |
|
| 20 |
class BanglaRAGChain:
|
| 21 |
def __init__(self):
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
self.max_new_tokens = 1024
|
| 27 |
-
self.chunk_size = 500
|
| 28 |
-
self.chunk_overlap = 150
|
| 29 |
-
self.text_path = ""
|
| 30 |
-
self.quantization = None
|
| 31 |
-
self.temperature = 0.9
|
| 32 |
-
self.top_p = 0.6
|
| 33 |
-
self.top_k = 50
|
| 34 |
-
self._text_content = None
|
| 35 |
-
self.hf_token = None
|
| 36 |
-
|
| 37 |
-
self.tokenizer = None
|
| 38 |
-
self.chat_model = None
|
| 39 |
-
self._llm = None
|
| 40 |
-
self._retriever = None
|
| 41 |
-
self._db = None
|
| 42 |
-
self._documents = []
|
| 43 |
-
self._chain = None
|
| 44 |
-
|
| 45 |
-
def load(
|
| 46 |
-
self,
|
| 47 |
-
chat_model_id,
|
| 48 |
-
embed_model_id,
|
| 49 |
-
text_path,
|
| 50 |
-
quantization,
|
| 51 |
-
k=4,
|
| 52 |
-
top_k=2,
|
| 53 |
-
top_p=0.6,
|
| 54 |
-
max_new_tokens=1024,
|
| 55 |
-
temperature=0.6,
|
| 56 |
-
chunk_size=500,
|
| 57 |
-
chunk_overlap=150,
|
| 58 |
-
hf_token=None,
|
| 59 |
-
):
|
| 60 |
self.chat_model_id = chat_model_id
|
| 61 |
self.embed_model_id = embed_model_id
|
|
|
|
| 62 |
self.k = k
|
| 63 |
self.top_k = top_k
|
| 64 |
self.top_p = top_p
|
| 65 |
self.temperature = temperature
|
| 66 |
self.chunk_size = chunk_size
|
| 67 |
self.chunk_overlap = chunk_overlap
|
| 68 |
-
self.text_path = text_path
|
| 69 |
-
self.quantization = quantization
|
| 70 |
-
self.max_new_tokens = max_new_tokens
|
| 71 |
self.hf_token = hf_token
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
os.environ["HF_TOKEN"] = str(self.hf_token)
|
| 75 |
-
|
| 76 |
self._load_models()
|
| 77 |
-
self._create_document()
|
| 78 |
-
self._update_chroma_db()
|
| 79 |
-
self._get_retriever()
|
| 80 |
-
self._get_llm()
|
| 81 |
-
self._create_chain()
|
| 82 |
|
| 83 |
def _load_models(self):
|
| 84 |
try:
|
| 85 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.chat_model_id)
|
| 86 |
-
bnb_config = None
|
| 87 |
if self.quantization:
|
| 88 |
-
bnb_config = BitsAndBytesConfig(
|
| 89 |
-
load_in_4bit=True,
|
| 90 |
-
bnb_4bit_use_double_quant=True,
|
| 91 |
-
bnb_4bit_quant_type="nf4",
|
| 92 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 93 |
-
)
|
| 94 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 95 |
self.chat_model_id,
|
| 96 |
-
|
| 97 |
-
torch_dtype=torch.bfloat16,
|
| 98 |
device_map="auto",
|
| 99 |
-
|
|
|
|
| 100 |
)
|
| 101 |
else:
|
| 102 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
self.chat_model_id,
|
| 104 |
-
torch_dtype=torch.bfloat16,
|
| 105 |
device_map="auto",
|
|
|
|
| 106 |
)
|
|
|
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
raise RuntimeError(f"Error loading chat model: {e}")
|
| 109 |
|
|
|
|
| 110 |
def _create_document(self):
|
| 111 |
try:
|
| 112 |
with open(self.text_path, "r", encoding="utf-8") as file:
|
|
|
|
| 13 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 14 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 15 |
from langchain_core.output_parsers import StrOutputParser
|
| 16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 17 |
import warnings
|
| 18 |
|
| 19 |
warnings.filterwarnings("ignore")
|
| 20 |
|
| 21 |
class BanglaRAGChain:
|
| 22 |
def __init__(self):
|
| 23 |
+
# Initialization code...
|
| 24 |
+
pass
|
| 25 |
+
|
| 26 |
+
def load(self, chat_model_id, embed_model_id, text_path, k, top_k, top_p, temperature, chunk_size, chunk_overlap, hf_token, max_new_tokens, quantization, offload_dir=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
self.chat_model_id = chat_model_id
|
| 28 |
self.embed_model_id = embed_model_id
|
| 29 |
+
self.text_path = text_path
|
| 30 |
self.k = k
|
| 31 |
self.top_k = top_k
|
| 32 |
self.top_p = top_p
|
| 33 |
self.temperature = temperature
|
| 34 |
self.chunk_size = chunk_size
|
| 35 |
self.chunk_overlap = chunk_overlap
|
|
|
|
|
|
|
|
|
|
| 36 |
self.hf_token = hf_token
|
| 37 |
+
self.max_new_tokens = max_new_tokens
|
| 38 |
+
self.quantization = quantization
|
| 39 |
+
self.offload_dir = offload_dir # New parameter
|
| 40 |
|
| 41 |
+
# Load models
|
|
|
|
|
|
|
| 42 |
self._load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
def _load_models(self):
|
| 45 |
try:
|
|
|
|
|
|
|
| 46 |
if self.quantization:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
self.chat_model_id,
|
| 49 |
+
torch_dtype="auto",
|
|
|
|
| 50 |
device_map="auto",
|
| 51 |
+
load_in_4bit=True,
|
| 52 |
+
offload_folder=self.offload_dir, # Offload here
|
| 53 |
)
|
| 54 |
else:
|
| 55 |
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
self.chat_model_id,
|
|
|
|
| 57 |
device_map="auto",
|
| 58 |
+
offload_folder=self.offload_dir, # Offload here
|
| 59 |
)
|
| 60 |
+
|
| 61 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.chat_model_id)
|
| 62 |
+
|
| 63 |
except Exception as e:
|
| 64 |
raise RuntimeError(f"Error loading chat model: {e}")
|
| 65 |
|
| 66 |
+
|
| 67 |
def _create_document(self):
|
| 68 |
try:
|
| 69 |
with open(self.text_path, "r", encoding="utf-8") as file:
|