Spaces:
Runtime error
Runtime error
| """ | |
| Client test. | |
| Run server: | |
| python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b | |
| NOTE: For private models, add --use-auth_token=True | |
| NOTE: --infer_devices=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches. | |
| Currently, this will force model to be on a single GPU. | |
| Then run this client as: | |
| python client_test.py | |
| """ | |
| debug = False | |
| import os | |
| os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' | |
| from gradio_client import Client | |
| client = Client("http://localhost:7860") | |
| if debug: | |
| print(client.view_api(all_endpoints=True)) | |
| instruction = '' # only for chat=True | |
| iinput = '' # only for chat=True | |
| context = '' | |
| # streaming output is supported, loops over and outputs each generation in streaming mode | |
| # but leave stream_output=False for simple input/output mode | |
| stream_output = False | |
| prompt_type = 'human_bot' | |
| temperature = 0.1 | |
| top_p = 0.75 | |
| top_k = 40 | |
| num_beams = 1 | |
| max_new_tokens = 50 | |
| min_new_tokens = 0 | |
| early_stopping = False | |
| max_time = 20 | |
| repetition_penalty = 1.0 | |
| num_return_sequences = 1 | |
| do_sample = True | |
| # only these 2 below used if pass chat=False | |
| chat = False | |
| instruction_nochat = "Who are you?" | |
| iinput_nochat = '' | |
| def test_client_basic(): | |
| args = [instruction, | |
| iinput, | |
| context, | |
| stream_output, | |
| prompt_type, | |
| temperature, | |
| top_p, | |
| top_k, | |
| num_beams, | |
| max_new_tokens, | |
| min_new_tokens, | |
| early_stopping, | |
| max_time, | |
| repetition_penalty, | |
| num_return_sequences, | |
| do_sample, | |
| chat, | |
| instruction_nochat, | |
| iinput_nochat, | |
| ] | |
| api_name = '/submit_nochat' | |
| res = client.predict( | |
| *tuple(args), | |
| api_name=api_name, | |
| ) | |
| res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res)) | |
| print(res_dict) | |
| import markdown # pip install markdown | |
| from bs4 import BeautifulSoup # pip install beautifulsoup4 | |
| def md_to_text(md): | |
| html = markdown.markdown(md) | |
| soup = BeautifulSoup(html, features='html.parser') | |
| return soup.get_text() | |
| if __name__ == '__main__': | |
| test_client_basic() | |