Spaces:
Runtime error
Runtime error
| from typing import List, Dict | |
| import pandas as pd | |
| import recognizers_suite | |
| from recognizers_suite import Culture | |
| import re | |
| import unicodedata | |
| from fuzzywuzzy import fuzz | |
| from utils.sql.extraction_from_sql import * | |
| from utils.sql.all_keywords import ALL_KEY_WORDS | |
| culture = Culture.English | |
| def str_normalize(user_input, recognition_types=None): | |
| """A string normalizer which recognize and normalize value based on recognizers_suite""" | |
| user_input = str(user_input) | |
| user_input = user_input.replace("\\n", "; ") | |
| def replace_by_idx_pairs(orig_str, strs_to_replace, idx_pairs): | |
| assert len(strs_to_replace) == len(idx_pairs) | |
| last_end = 0 | |
| to_concat = [] | |
| for idx_pair, str_to_replace in zip(idx_pairs, strs_to_replace): | |
| to_concat.append(orig_str[last_end:idx_pair[0]]) | |
| to_concat.append(str_to_replace) | |
| last_end = idx_pair[1] | |
| to_concat.append(orig_str[last_end:]) | |
| return ''.join(to_concat) | |
| if recognition_types is None: | |
| recognition_types = ["datetime", | |
| "number", | |
| # "ordinal", | |
| # "percentage", | |
| # "age", | |
| # "currency", | |
| # "dimension", | |
| # "temperature", | |
| ] | |
| for recognition_type in recognition_types: | |
| if re.match("\d+/\d+", user_input): | |
| # avoid calculating str as 1991/92 | |
| continue | |
| recognized_list = getattr(recognizers_suite, "recognize_{}".format(recognition_type))(user_input, | |
| culture) # may match multiple parts | |
| strs_to_replace = [] | |
| idx_pairs = [] | |
| for recognized in recognized_list: | |
| if not recognition_type == 'datetime': | |
| recognized_value = recognized.resolution['value'] | |
| if str(recognized_value).startswith("P"): | |
| # if the datetime is a period: | |
| continue | |
| else: | |
| strs_to_replace.append(recognized_value) | |
| idx_pairs.append((recognized.start, recognized.end + 1)) | |
| else: | |
| if recognized.resolution: # in some cases, this variable could be none. | |
| if len(recognized.resolution['values']) == 1: | |
| strs_to_replace.append( | |
| recognized.resolution['values'][0]['timex']) # We use timex as normalization | |
| idx_pairs.append((recognized.start, recognized.end + 1)) | |
| if len(strs_to_replace) > 0: | |
| user_input = replace_by_idx_pairs(user_input, strs_to_replace, idx_pairs) | |
| if re.match("(.*)-(.*)-(.*) 00:00:00", user_input): | |
| user_input = user_input[:-len("00:00:00") - 1] | |
| # '2008-04-13 00:00:00' -> '2008-04-13' | |
| return user_input | |
| def prepare_df_for_neuraldb_from_table(table: Dict, add_row_id=True, normalize=True, lower_case=True): | |
| header, rows = table['header'], table['rows'] | |
| if add_row_id and 'row_id' not in header: | |
| header = ["row_id"] + header | |
| rows = [["{}".format(i)] + row for i, row in enumerate(rows)] | |
| if normalize: | |
| df = convert_df_type(pd.DataFrame(data=rows, columns=header), lower_case=lower_case) | |
| else: | |
| df = pd.DataFrame(data=rows, columns=header) | |
| return df | |
| def convert_df_type(df: pd.DataFrame, lower_case=True): | |
| """ | |
| A simple converter of dataframe data type from string to int/float/datetime. | |
| """ | |
| def get_table_content_in_column(table): | |
| if isinstance(table, pd.DataFrame): | |
| header = table.columns.tolist() | |
| rows = table.values.tolist() | |
| else: | |
| # Standard table dict format | |
| header, rows = table['header'], table['rows'] | |
| all_col_values = [] | |
| for i in range(len(header)): | |
| one_col_values = [] | |
| for _row in rows: | |
| one_col_values.append(_row[i]) | |
| all_col_values.append(one_col_values) | |
| return all_col_values | |
| # Rename empty columns | |
| new_columns = [] | |
| for idx, header in enumerate(df.columns): | |
| if header == '': | |
| new_columns.append('FilledColumnName') # Fixme: give it a better name when all finished! | |
| else: | |
| new_columns.append(header) | |
| df.columns = new_columns | |
| # Rename duplicate columns | |
| new_columns = [] | |
| for idx, header in enumerate(df.columns): | |
| if header in new_columns: | |
| new_header, suffix = header, 2 | |
| while new_header in new_columns: | |
| new_header = header + '_' + str(suffix) | |
| suffix += 1 | |
| new_columns.append(new_header) | |
| else: | |
| new_columns.append(header) | |
| df.columns = new_columns | |
| # Recognize null values like "-" | |
| null_tokens = ['', '-', '/'] | |
| for header in df.columns: | |
| df[header] = df[header].map(lambda x: str(None) if x in null_tokens else x) | |
| # Convert the null values in digit column to "NaN" | |
| all_col_values = get_table_content_in_column(df) | |
| for col_i, one_col_values in enumerate(all_col_values): | |
| all_number_flag = True | |
| for row_i, cell_value in enumerate(one_col_values): | |
| try: | |
| float(cell_value) | |
| except Exception as e: | |
| if not cell_value in [str(None), str(None).lower()]: | |
| # None or none | |
| all_number_flag = False | |
| if all_number_flag: | |
| _header = df.columns[col_i] | |
| df[_header] = df[_header].map(lambda x: "NaN" if x in [str(None), str(None).lower()] else x) | |
| # Normalize cell values. | |
| for header in df.columns: | |
| df[header] = df[header].map(lambda x: str_normalize(x)) | |
| # Strip the mis-added "01-01 00:00:00" | |
| all_col_values = get_table_content_in_column(df) | |
| for col_i, one_col_values in enumerate(all_col_values): | |
| all_with_00_00_00 = True | |
| all_with_01_00_00_00 = True | |
| all_with_01_01_00_00_00 = True | |
| for row_i, cell_value in enumerate(one_col_values): | |
| if not str(cell_value).endswith(" 00:00:00"): | |
| all_with_00_00_00 = False | |
| if not str(cell_value).endswith("-01 00:00:00"): | |
| all_with_01_00_00_00 = False | |
| if not str(cell_value).endswith("-01-01 00:00:00"): | |
| all_with_01_01_00_00_00 = False | |
| if all_with_01_01_00_00_00: | |
| _header = df.columns[col_i] | |
| df[_header] = df[_header].map(lambda x: x[:-len("-01-01 00:00:00")]) | |
| continue | |
| if all_with_01_00_00_00: | |
| _header = df.columns[col_i] | |
| df[_header] = df[_header].map(lambda x: x[:-len("-01 00:00:00")]) | |
| continue | |
| if all_with_00_00_00: | |
| _header = df.columns[col_i] | |
| df[_header] = df[_header].map(lambda x: x[:-len(" 00:00:00")]) | |
| continue | |
| # Do header and cell value lower case | |
| if lower_case: | |
| new_columns = [] | |
| for header in df.columns: | |
| lower_header = str(header).lower() | |
| if lower_header in new_columns: | |
| new_header, suffix = lower_header, 2 | |
| while new_header in new_columns: | |
| new_header = lower_header + '-' + str(suffix) | |
| suffix += 1 | |
| new_columns.append(new_header) | |
| else: | |
| new_columns.append(lower_header) | |
| df.columns = new_columns | |
| for header in df.columns: | |
| # df[header] = df[header].map(lambda x: str(x).lower()) | |
| df[header] = df[header].map(lambda x: str(x).lower().strip()) | |
| # Recognize header type | |
| for header in df.columns: | |
| float_able = False | |
| int_able = False | |
| datetime_able = False | |
| # Recognize int & float type | |
| try: | |
| df[header].astype("float") | |
| float_able = True | |
| except: | |
| pass | |
| if float_able: | |
| try: | |
| if all(df[header].astype("float") == df[header].astype(int)): | |
| int_able = True | |
| except: | |
| pass | |
| if float_able: | |
| if int_able: | |
| df[header] = df[header].astype(int) | |
| else: | |
| df[header] = df[header].astype(float) | |
| # Recognize datetime type | |
| try: | |
| df[header].astype("datetime64") | |
| datetime_able = True | |
| except: | |
| pass | |
| if datetime_able: | |
| df[header] = df[header].astype("datetime64") | |
| return df | |
| def normalize(x): | |
| """ Normalize string. """ | |
| # Copied from WikiTableQuestions dataset official evaluator. | |
| if x is None: | |
| return None | |
| # Remove diacritics | |
| x = ''.join(c for c in unicodedata.normalize('NFKD', x) | |
| if unicodedata.category(c) != 'Mn') | |
| # Normalize quotes and dashes | |
| x = re.sub("[‘’´`]", "'", x) | |
| x = re.sub("[“”]", "\"", x) | |
| x = re.sub("[‐‑‒–—−]", "-", x) | |
| while True: | |
| old_x = x | |
| # Remove citations | |
| x = re.sub("((?<!^)\[[^\]]*\]|\[\d+\]|[•♦†‡*#+])*$", "", x.strip()) | |
| # Remove details in parenthesis | |
| x = re.sub("(?<!^)( \([^)]*\))*$", "", x.strip()) | |
| # Remove outermost quotation mark | |
| x = re.sub('^"([^"]*)"$', r'\1', x.strip()) | |
| if x == old_x: | |
| break | |
| # Remove final '.' | |
| if x and x[-1] == '.': | |
| x = x[:-1] | |
| # Collapse whitespaces and convert to lower case | |
| x = re.sub('\s+', ' ', x, flags=re.U).lower().strip() | |
| return x | |
| def post_process_sql(sql_str, df, table_title=None, process_program_with_fuzzy_match_on_db=True, verbose=False): | |
| """Post process SQL: including basic fix and further fuzzy match on cell and SQL to process""" | |
| def basic_fix(sql_str, all_headers, table_title=None): | |
| def finditer(sub_str: str, mother_str: str): | |
| result = [] | |
| start_index = 0 | |
| while True: | |
| start_index = mother_str.find(sub_str, start_index, -1) | |
| if start_index == -1: | |
| break | |
| end_idx = start_index + len(sub_str) | |
| result.append((start_index, end_idx)) | |
| start_index = end_idx | |
| return result | |
| if table_title: | |
| sql_str = sql_str.replace("FROM " + table_title, "FROM w") | |
| sql_str = sql_str.replace("FROM " + table_title.lower(), "FROM w") | |
| """Case 1: Fix the `` missing. """ | |
| # Remove the null header. | |
| while '' in all_headers: | |
| all_headers.remove('') | |
| # Remove the '\n' in header. | |
| # This is because the WikiTQ won't actually show the str in two lines, | |
| # they use '\n' to mean that, and display it in the same line when print. | |
| sql_str = sql_str.replace("\\n", "\n") | |
| sql_str = sql_str.replace("\n", "\\n") | |
| # Add `` in SQL. | |
| all_headers.sort(key=lambda x: len(x), reverse=True) | |
| have_matched = [0 for i in range(len(sql_str))] | |
| # match quotation | |
| idx_s_single_quotation = [_ for _ in range(1, len(sql_str)) if | |
| sql_str[_] in ["\'"] and sql_str[_ - 1] not in ["\'"]] | |
| idx_s_double_quotation = [_ for _ in range(1, len(sql_str)) if | |
| sql_str[_] in ["\""] and sql_str[_ - 1] not in ["\""]] | |
| for idx_s in [idx_s_single_quotation, idx_s_double_quotation]: | |
| if len(idx_s) % 2 == 0: | |
| for idx in range(int(len(idx_s) / 2)): | |
| start_idx = idx_s[idx * 2] | |
| end_idx = idx_s[idx * 2 + 1] | |
| have_matched[start_idx: end_idx] = [2 for _ in range(end_idx - start_idx)] | |
| # match headers | |
| for header in all_headers: | |
| if (header in sql_str) and (header not in ALL_KEY_WORDS): | |
| all_matched_of_this_header = finditer(header, sql_str) | |
| for matched_of_this_header in all_matched_of_this_header: | |
| start_idx, end_idx = matched_of_this_header | |
| if all(have_matched[start_idx: end_idx]) == 0 and (not sql_str[start_idx - 1] == "`") and ( | |
| not sql_str[end_idx] == "`"): | |
| have_matched[start_idx: end_idx] = [1 for _ in range(end_idx - start_idx)] | |
| # a bit ugly, but anyway. | |
| # re-compose sql from the matched idx. | |
| start_have_matched = [0] + have_matched | |
| end_have_matched = have_matched + [0] | |
| start_idx_s = [idx - 1 for idx in range(1, len(start_have_matched)) if | |
| start_have_matched[idx - 1] == 0 and start_have_matched[idx] == 1] | |
| end_idx_s = [idx for idx in range(len(end_have_matched) - 1) if | |
| end_have_matched[idx] == 1 and end_have_matched[idx + 1] == 0] | |
| assert len(start_idx_s) == len(end_idx_s) | |
| spans = [] | |
| current_idx = 0 | |
| for start_idx, end_idx in zip(start_idx_s, end_idx_s): | |
| spans.append(sql_str[current_idx:start_idx]) | |
| spans.append(sql_str[start_idx:end_idx + 1]) | |
| current_idx = end_idx + 1 | |
| spans.append(sql_str[current_idx:]) | |
| sql_str = '`'.join(spans) | |
| return sql_str | |
| def fuzzy_match_process(sql_str, df, verbose=False): | |
| """ | |
| Post-process SQL by fuzzy matching value with table contents. | |
| """ | |
| def _get_matched_cells(value_str, df, fuzz_threshold=70): | |
| """ | |
| Get matched table cells with value token. | |
| """ | |
| matched_cells = [] | |
| for row_id, row in df.iterrows(): | |
| for cell in row: | |
| cell = str(cell) | |
| fuzz_score = fuzz.ratio(value_str, cell) | |
| if fuzz_score == 100: | |
| matched_cells = [(cell, fuzz_score)] | |
| return matched_cells | |
| if fuzz_score >= fuzz_threshold: | |
| matched_cells.append((cell, fuzz_score)) | |
| matched_cells = sorted(matched_cells, key=lambda x: x[1], reverse=True) | |
| return matched_cells | |
| def _check_valid_fuzzy_match(value_str, matched_cell): | |
| """ | |
| Check if the fuzzy match is valid, now considering: | |
| 1. The number/date should not be disturbed, but adding new number or deleting number is valid. | |
| """ | |
| number_pattern = "[+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?" | |
| numbers_in_value = re.findall(number_pattern, value_str) | |
| numbers_in_matched_cell = re.findall(number_pattern, matched_cell) | |
| try: | |
| numbers_in_value = [float(num.replace(',', '')) for num in numbers_in_value] | |
| except: | |
| print(f"Can't convert number string {numbers_in_value} into float in _check_valid_fuzzy_match().") | |
| try: | |
| numbers_in_matched_cell = [float(num.replace(',', '')) for num in numbers_in_matched_cell] | |
| except: | |
| print( | |
| f"Can't convert number string {numbers_in_matched_cell} into float in _check_valid_fuzzy_match().") | |
| numbers_in_value = set(numbers_in_value) | |
| numbers_in_matched_cell = set(numbers_in_matched_cell) | |
| if numbers_in_value.issubset(numbers_in_matched_cell) or numbers_in_matched_cell.issubset(numbers_in_value): | |
| return True | |
| else: | |
| return False | |
| # Drop trailing '\n```', a pattern that may appear in Codex SQL generation | |
| sql_str = sql_str.rstrip('```').rstrip('\n') | |
| # Replace QA module with placeholder | |
| qa_pattern = "QA\(.+?;.*?`.+?`.*?\)" | |
| qas = re.findall(qa_pattern, sql_str) | |
| for idx, qa in enumerate(qas): | |
| sql_str = sql_str.replace(qa, f"placeholder{idx}") | |
| # Parse and replace SQL value with table contents | |
| sql_tokens = tokenize(sql_str) | |
| sql_template_tokens = extract_partial_template_from_sql(sql_str) | |
| # Fix 'between' keyword bug in parsing templates | |
| fixed_sql_template_tokens = [] | |
| sql_tok_bias = 0 | |
| for idx, sql_templ_tok in enumerate(sql_template_tokens): | |
| sql_tok = sql_tokens[idx + sql_tok_bias] | |
| if sql_tok == 'between' and sql_templ_tok == '[WHERE_OP]': | |
| fixed_sql_template_tokens.extend(['[WHERE_OP]', '[VALUE]', 'and']) | |
| sql_tok_bias += 2 # pass '[VALUE]', 'and' | |
| else: | |
| fixed_sql_template_tokens.append(sql_templ_tok) | |
| sql_template_tokens = fixed_sql_template_tokens | |
| for idx, tok in enumerate(sql_tokens): | |
| if tok in ALL_KEY_WORDS: | |
| sql_tokens[idx] = tok.upper() | |
| if verbose: | |
| print(sql_tokens) | |
| print(sql_template_tokens) | |
| assert len(sql_tokens) == len(sql_template_tokens) | |
| value_indices = [idx for idx in range(len(sql_template_tokens)) if sql_template_tokens[idx] == '[VALUE]'] | |
| for value_idx in value_indices: | |
| # Skip the value if the where condition column is QA module | |
| if value_idx >= 2 and sql_tokens[value_idx - 2].startswith('placeholder'): | |
| continue | |
| value_str = sql_tokens[value_idx] | |
| # Drop \"\" for fuzzy match | |
| is_string = False | |
| if value_str[0] == "\"" and value_str[-1] == "\"": | |
| value_str = value_str[1:-1] | |
| is_string = True | |
| # If already fuzzy match, skip | |
| if value_str[0] == '%' or value_str[-1] == '%': | |
| continue | |
| value_str = value_str.lower() | |
| # Fuzzy Match | |
| matched_cells = _get_matched_cells(value_str, df) | |
| if verbose: | |
| print(matched_cells) | |
| new_value_str = value_str | |
| if matched_cells: | |
| # new_value_str = matched_cells[0][0] | |
| for matched_cell, fuzz_score in matched_cells: | |
| if _check_valid_fuzzy_match(value_str, matched_cell): | |
| new_value_str = matched_cell | |
| if verbose and new_value_str != value_str: | |
| print("\tfuzzy match replacing!", value_str, '->', matched_cell, f'fuzz_score:{fuzz_score}') | |
| break | |
| if is_string: | |
| new_value_str = f"\"{new_value_str}\"" | |
| sql_tokens[value_idx] = new_value_str | |
| # Compose new sql string | |
| # Clean column name in SQL since columns may have been tokenized in the postprocessing, e.g., (ppp) -> ( ppp ) | |
| new_sql_str = ' '.join(sql_tokens) | |
| sql_columns = re.findall('`\s(.*?)\s`', new_sql_str) | |
| for sql_col in sql_columns: | |
| matched_columns = [] | |
| for col in df.columns: | |
| score = fuzz.ratio(sql_col.lower(), col) | |
| if score == 100: | |
| matched_columns = [(col, score)] | |
| break | |
| if score >= 80: | |
| matched_columns.append((col, score)) | |
| matched_columns = sorted(matched_columns, key=lambda x: x[1], reverse=True) | |
| if matched_columns: | |
| matched_col = matched_columns[0][0] | |
| new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{matched_col}`") | |
| else: | |
| new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{sql_col}`") | |
| # Restore QA modules | |
| for idx, qa in enumerate(qas): | |
| new_sql_str = new_sql_str.replace(f"placeholder{idx}", qa) | |
| # Fix '<>' when composing the new sql | |
| new_sql_str = new_sql_str.replace('< >', '<>') | |
| return new_sql_str | |
| sql_str = basic_fix(sql_str, list(df.columns), table_title) | |
| if process_program_with_fuzzy_match_on_db: | |
| try: | |
| sql_str = fuzzy_match_process(sql_str, df, verbose) | |
| except: | |
| pass | |
| return sql_str | |