File size: 7,286 Bytes
f60ce93
7d04c1c
0059ef7
 
df058d7
bcf8eca
df058d7
a2e3d4b
ef3a227
8a6cf88
a828d88
8a6cf88
 
a828d88
8a6cf88
a828d88
 
 
 
 
 
 
9ccc625
33c190e
8a6cf88
0059ef7
df058d7
 
66ad10a
0059ef7
8a6cf88
df058d7
 
0059ef7
df058d7
8a6cf88
df058d7
45b475d
8a6cf88
 
 
 
45b475d
659d788
8a6cf88
a044018
8a6cf88
 
cbf0145
a2e3d4b
df058d7
d53ce83
e502fb9
3592cb3
8a6cf88
3592cb3
df058d7
 
 
a828d88
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e3d4b
8a6cf88
 
a2e3d4b
8a6cf88
 
 
 
df058d7
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ccc625
9786ddd
8a6cf88
 
 
 
 
 
 
 
 
df058d7
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a044018
8a6cf88
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
import re
import numpy as np
import pandas as pd
import pickle
import sklearn
import catboost
import shap
from shap_plots import shap_summary_plot
from dynamic_shap_plots import matplotlib_to_plotly, summary_plot_plotly_fig
import plotly.tools as tls
from dash import dcc
import matplotlib.pyplot as plt
import plotly.graph_objs as go

try:
    import matplotlib.pyplot as pl
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.ticker import MaxNLocator
except ImportError:
    pass

st.set_option('deprecation.showPyplotGlobalUse', False)

seed = 0

annotations = pd.read_csv("all_genes_merged_ml_data.csv")
annotations.fillna(0, inplace=True)
annotations = annotations.set_index("Gene")

model_path = "best_model_fitted.pkl"
with open(model_path, 'rb') as file:
    catboost_model = pickle.load(file)

probabilities = catboost_model.predict_proba(annotations)
prob_df = pd.DataFrame(probabilities, index=annotations.index, columns=['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely'])
df_total = pd.concat([prob_df, annotations], axis=1)

# Create tabs for navigation
with st.sidebar:
    st.sidebar.title("Navigation")
    tab = st.sidebar.radio("Go to", ("Gene Prioritisation", "Interactive SHAP Plot", "Supervised SHAP Clustering"))

st.title('Blood Pressure Gene Prioritisation Post-GWAS')
st.markdown("""A machine learning pipeline for predicting disease-causing genes post-genome-wide association study in blood pressure.""")

# Define a function to collect genes from input
collect_genes = lambda x: [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
input_gene_list = st.text_input("Input a list of multiple HGNC genes (enter comma separated):")
gene_list = collect_genes(input_gene_list)
explainer = shap.TreeExplainer(catboost_model)

@st.cache_data
def convert_df(df):
    return df.to_csv(index=False).encode('utf-8')

probability_columns = ['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely']
features_list = [column for column in df_total.columns if column not in probability_columns]
features = df_total[features_list]

# Page 1: Gene Prioritisation
if tab == "Gene Prioritisation":
    if len(gene_list) > 1:
        df = df_total[df_total.index.isin(gene_list)]
        df['Gene'] = df.index
        df.reset_index(drop=True, inplace=True)
        
        required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
        df = df[required_columns]
        st.dataframe(df)
        
        output = df[['Gene'] + probability_columns]
        csv = convert_df(output)
        st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
        
        df_shap = df.drop(columns=probability_columns + ['Gene'])
        shap_values = explainer.shap_values(df_shap)

        col1, col2 = st.columns(2)
        class_names = ["Most likely", "Probable", "Least likely"]

        with col1:
            st.subheader("Global SHAP Summary Plot")
            shap.summary_plot(shap_values, df_shap, plot_type="bar", class_names=class_names)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        with col2:
            st.subheader(f"{class_names[0]} Gene Prediction")
            shap.summary_plot(shap_values[0], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        col3, col4 = st.columns(2)

        with col3:
            st.subheader(f"{class_names[1]} Gene Prediction")
            shap.summary_plot(shap_values[1], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        with col4:
            st.subheader(f"{class_names[2]} Gene Prediction")
            shap.summary_plot(shap_values[2], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

    else:
        pass

    input_gene = st.text_input("Input an individual HGNC gene:")
    if input_gene:
        df2 = df_total[df_total.index == input_gene]
        class_names = ["Most likely", "Probable", "Least likely"]
        if not df2.empty:
            df2['Gene'] = df2.index
            df2.reset_index(drop=True, inplace=True)
            
            required_columns = ['Gene'] + probability_columns + [col for col in df2.columns if col not in probability_columns and col != 'Gene']
            df2 = df2[required_columns]
            st.dataframe(df2)

            if ' ' in input_gene or ',' in input_gene:
                st.write('Input Error: Please input only a single HGNC gene name with no white spaces or commas.')
            else:
                df2_shap = df_total.loc[[input_gene], [col for col in df_total.columns if col not in probability_columns + ['Gene']]]
                print(df2_shap.columns)
                shap_values = explainer.shap_values(df2_shap)
                shap.getjs()

                for i in range(3):
                    st.subheader(f"Force Plot for {class_names[i]} Prediction")
                    force_plot = shap.force_plot(
                        explainer.expected_value[i],
                        shap_values[i],
                        df2_shap, 
                        matplotlib=True,
                        show=False
                    )
                    st.pyplot(fig=force_plot)              
        else:
            st.write("Gene not found in the dataset.")
    else:
        pass

    st.markdown("""
    ### Total Gene Prioritisation Results for All Genes:
    """)

    df_total_output = df_total
    df_total_output['Gene'] = df_total_output.index
    #df_total_output.reset_index(drop=True, inplace=True)
    st.dataframe(df_total_output)
    csv = convert_df(df_total_output)
    st.download_button("Download Gene Prioritisation", csv, "all_genes_bp_prioritisation.csv", "text/csv", key='download-all-csv')

# Page 2: Interactive SHAP Plot

elif tab == "Interactive SHAP Plot":
    st.title("Interactive SHAP Plot")
    if len(gene_list) > 1:
        df = df_total[df_total.index.isin(gene_list)]
        df['Gene'] = df.index
        df.reset_index(drop=True, inplace=True)
        
        required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
        df = df[required_columns]
        st.dataframe(df)
        
        output = df[['Gene'] + probability_columns]
        csv = convert_df(output)
        st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
        
        df_shap = df.drop(columns=probability_columns + ['Gene'])
        shap_values = explainer.shap_values(df_shap)
        
        # Use shap's summary_plot function for interactivity
       # summary_plot = shap.summary_plot(shap_values[0], df_shap, plot_type='interactive', max_display=10)
        summary_plot = summary_plot_plotly_fig(df_shap, shap_values[0], max_display=10)
        st.pyplot(summary_plot)
        st.caption("SHAP Summary Plot of All Input Genes")


# Page 3: Supervised SHAP Clustering
elif tab == "Supervised SHAP Clustering":
    st.title("Supervised SHAP Clustering")
    # Add your code here to implement supervised SHAP clustering