hmb's picture
hmb HF Staff
Update app.py
1fa456e verified
raw
history blame
8.32 kB
import gradio as gr
import pandas as pd
from nomad_data import country_emoji_map, data
# Create dataframe from imported data
df = pd.DataFrame(data)
# Create styling functions
def style_quality_of_life(val):
"""Style the Quality of Life column with color gradient from red to green"""
if pd.isna(val):
# Special styling for null/missing values
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
# Define min and max values for Quality of Life (typically on a scale of 0-10)
min_val = 5.0 # Anything below this will be bright red
max_val = 9.0 # Anything above this will be bright green
# Normalize value between 0 and 1
normalized = (val - min_val) / (max_val - min_val)
# Clamp between 0 and 1
normalized = max(0, min(normalized, 1))
# Calculate percentage fill for gradient
percentage = int(normalized * 100)
# Create a linear gradient based on the normalized value
if normalized < 0.5:
# Red to yellow gradient
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
# Yellow to green gradient
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_internet_speed(val):
"""Style the Internet Speed column from red (slow) to green (fast)"""
if pd.isna(val):
# Special styling for null/missing values
return 'background-color: rgba(200, 200, 200, 0.2); color: #999; font-style: italic;'
# Define min and max values
min_val = 20 # Slow internet
max_val = 300 # Fast internet
# Normalize value between 0 and 1
normalized = (val - min_val) / (max_val - min_val)
# Clamp between 0 and 1
normalized = max(0, min(normalized, 1))
# Calculate percentage fill for gradient
percentage = int(normalized * 100)
# Create a linear gradient based on the normalized value
if normalized < 0.5:
# Red to yellow gradient
start_color = f"rgba(255, {int(255 * (normalized * 2))}, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
else:
# Yellow to green gradient
start_color = f"rgba({int(255 * (1 - (normalized - 0.5) * 2))}, 255, 0, 0.3)"
end_color = "rgba(255, 255, 255, 0)"
return f'background: linear-gradient(to right, {start_color} {percentage}%, {end_color} {percentage}%)'
def style_dataframe(df):
"""Apply styling to the entire dataframe"""
# Create a copy to avoid SettingWithCopyWarning
styled_df = df.copy()
# Convert to Styler object
styler = styled_df.style
# Apply styles to specific columns
styler = styler.applymap(style_quality_of_life, subset=['Quality of Life'])
styler = styler.applymap(style_internet_speed, subset=['Internet Speed (Mbps)'])
# Highlight null values in all columns
styler = styler.highlight_null(props='color: #999; font-style: italic; background-color: rgba(200, 200, 200, 0.2)')
# Format numeric columns
styler = styler.format({
'Quality of Life': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Internet Speed (Mbps)': lambda x: f'{x:.1f}' if pd.notna(x) else 'Data Not Available',
'Monthly Cost Living (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Length (Months)': lambda x: f'{x:.0f}' if pd.notna(x) else 'Data Not Available',
'Visa Cost (USD)': lambda x: f'${x:.0f}' if pd.notna(x) else 'Data Not Available',
'Growth Trend (5 Years)': lambda x: f'{x}' if pd.notna(x) else 'Data Not Available'
})
return styler
def filter_data(country, max_cost):
"""Filter data based on country and maximum cost of living"""
filtered_df = df.copy()
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
# Filter by maximum cost of living (and handle null values)
if max_cost < df["Monthly Cost Living (USD)"].max():
# Include rows where cost is less than max_cost OR cost is null
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= max_cost) | (filtered_df["Monthly Cost Living (USD)"].isna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
# Function to get unique values for dropdowns with "All" option
def get_unique_values(column):
unique_values = ["All"] + sorted(df[column].unique().tolist())
return unique_values
# Add country emojis for the dropdown
def get_country_with_emoji(column):
choices_with_emoji = ["โœˆ๏ธ All"]
for c in df[column].unique():
if c in country_emoji_map:
choices_with_emoji.append(country_emoji_map[c])
else:
choices_with_emoji.append(c)
return sorted(choices_with_emoji)
# Initial styled dataframe
styled_df = style_dataframe(df)
with gr.Blocks(css="""
.gradio-container .table-wrap {
font-family: 'Inter', sans-serif;
}
.gradio-container table td, .gradio-container table th {
text-align: left;
}
.gradio-container table th {
background-color: #f3f4f6;
font-weight: 600;
}
/* Style for null values */
.null-value {
color: #999;
font-style: italic;
background-color: rgba(200, 200, 200, 0.2);
}
.title {
font-size: 3rem;
font-weight: 600;
text-align: center;
}
""") as demo:
gr.HTML(elem_classes="title", value="๐ŸŒ")
gr.HTML("<a href='https://www.fontspace.com/category/graffiti'><img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>")
gr.Markdown("Explore top digital nomad locations around the world. The bars in numeric columns indicate relative values - longer bars are better!")
with gr.Row():
country_dropdown = gr.Dropdown(
choices=get_country_with_emoji("Country"),
value="โœˆ๏ธ All",
label="๐ŸŒ Filter by Country"
)
cost_slider = gr.Slider(
minimum=500,
maximum=4000,
value=4000,
step=100,
label="๐Ÿ’ฐ Maximum Monthly Cost of Living (USD)"
)
data_table = gr.Dataframe(
value=styled_df,
datatype=["str", "str", "number", "number", "number", "str", "number", "number", "str", "str"],
max_height=600,
interactive=False,
show_copy_button=True,
show_row_numbers=True,
show_search=True,
show_fullscreen_button=True,
pinned_columns=2
)
# Update data when filters change
def process_country_filter(country, cost):
# Remove emoji from country name if present
if country and country.startswith("โœˆ๏ธ All"):
country = "All"
else:
for emoji_code in ["๐Ÿ‡ง๐Ÿ‡ท", "๐Ÿ‡ญ๐Ÿ‡บ", "๐Ÿ‡บ๐Ÿ‡พ", "๐Ÿ‡ต๐Ÿ‡น", "๐Ÿ‡ฌ๐Ÿ‡ช", "๐Ÿ‡น๐Ÿ‡ญ", "๐Ÿ‡ฆ๐Ÿ‡ช", "๐Ÿ‡ช๐Ÿ‡ธ", "๐Ÿ‡ฎ๐Ÿ‡น", "๐Ÿ‡จ๐Ÿ‡ฆ", "๐Ÿ‡จ๐Ÿ‡ด", "๐Ÿ‡ฒ๐Ÿ‡ฝ", "๐Ÿ‡ฏ๐Ÿ‡ต", "๐Ÿ‡ฐ๐Ÿ‡ท"]:
if country and emoji_code in country:
country = country.split(" ", 1)[1]
break
filtered_df = df.copy()
# Filter by country
if country and country != "All":
filtered_df = filtered_df[filtered_df["Country"] == country]
# Filter by cost with special handling for nulls
if cost < df["Monthly Cost Living (USD)"].max():
cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
filtered_df = filtered_df[cost_mask]
return style_dataframe(filtered_df)
country_dropdown.change(process_country_filter, [country_dropdown, cost_slider], data_table)
cost_slider.change(process_country_filter, [country_dropdown, cost_slider], data_table)
demo.launch()