hmb HF Staff commited on
Commit
9b990a4
ยท
verified ยท
1 Parent(s): cf6903d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -16
app.py CHANGED
@@ -149,27 +149,66 @@ with gr.Blocks(css="""
149
  font-weight: 600;
150
  text-align: center;
151
  }
 
 
 
 
 
 
 
152
  """) as demo:
 
153
  gr.HTML(elem_classes="title", value="๐ŸŒ")
154
  gr.HTML("<img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>")
155
 
156
- gr.Markdown("Explore top digital nomad locations around the world. The bars in numeric columns indicate relative values - longer bars are better!")
157
 
 
158
  with gr.Row():
159
- country_dropdown = gr.Dropdown(
160
- choices=get_country_with_emoji("Country"),
161
- value="โœˆ๏ธ All",
162
- label="๐ŸŒ Filter by Country"
163
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
- cost_slider = gr.Slider(
166
- minimum=500,
167
- maximum=4000,
168
- value=4000,
169
- step=100,
170
- label="๐Ÿ’ฐ Maximum Monthly Cost of Living (USD)"
171
- )
172
-
 
 
 
 
 
 
 
 
 
 
173
 
174
  data_table = gr.Dataframe(
175
  value=styled_df,
@@ -208,7 +247,170 @@ with gr.Blocks(css="""
208
 
209
  return style_dataframe(filtered_df)
210
 
211
- country_dropdown.change(process_country_filter, [country_dropdown, cost_slider], data_table)
212
- cost_slider.change(process_country_filter, [country_dropdown, cost_slider], data_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
  demo.launch()
 
149
  font-weight: 600;
150
  text-align: center;
151
  }
152
+
153
+ .app-subtitle {
154
+ color: rgba(255, 255, 255, 0.8);
155
+ font-size: 1.2rem;
156
+ margin-bottom: 15px;
157
+ }
158
+
159
  """) as demo:
160
+ # Remove header container and directly show title and subtitle with regular markdown
161
  gr.HTML(elem_classes="title", value="๐ŸŒ")
162
  gr.HTML("<img src='https://see.fontimg.com/api/rf5/JpZqa/MWMyNzc2ODk3OTFlNDk2OWJkY2VjYTIzNzFlY2E4MWIudHRm/bm9tYWQgZGVzdGluYXRpb25z/super-feel.png?r=fs&h=130&w=2000&fg=e2e2e2&bg=FFFFFF&tb=1&s=65' alt='Graffiti fonts'></a>")
163
 
164
+ gr.Markdown("Discover the best places for digital nomads around the globe")
165
 
166
+ # Remove the separate row for basic filters and integrate all filters into one section
167
  with gr.Row():
168
+ with gr.Column(scale=1):
169
+ # Group all sliders together
170
+ cost_slider = gr.Slider(
171
+ minimum=500,
172
+ maximum=4000,
173
+ value=4000,
174
+ step=100,
175
+ label="๐Ÿ’ฐ Maximum Monthly Cost of Living (USD)"
176
+ )
177
+
178
+ min_internet = gr.Slider(
179
+ minimum=0,
180
+ maximum=400,
181
+ value=0,
182
+ step=10,
183
+ label="๐ŸŒ Minimum Internet Speed (Mbps)"
184
+ )
185
+
186
+ min_quality = gr.Slider(
187
+ minimum=5,
188
+ maximum=10,
189
+ value=5,
190
+ step=0.1,
191
+ label="โญ Minimum Quality of Life"
192
+ )
193
 
194
+ with gr.Column(scale=1):
195
+ # Put country dropdown with the checkboxes
196
+ country_dropdown = gr.Dropdown(
197
+ choices=get_country_with_emoji("Country"),
198
+ value="โœˆ๏ธ All",
199
+ label="๐ŸŒ Filter by Country"
200
+ )
201
+
202
+ # Group all checkboxes together
203
+ visa_filter = gr.CheckboxGroup(
204
+ choices=["Has Digital Nomad Visa", "Visa Length โ‰ฅ 12 Months"],
205
+ label="๐Ÿ›‚ Visa Requirements"
206
+ )
207
+
208
+ special_features = gr.CheckboxGroup(
209
+ choices=["Coastal Cities", "Cultural Hotspots", "Affordable (<$1000/month)"],
210
+ label="โœจ Special Features"
211
+ )
212
 
213
  data_table = gr.Dataframe(
214
  value=styled_df,
 
247
 
248
  return style_dataframe(filtered_df)
249
 
250
+ # Define advanced filters function
251
+ def apply_advanced_filters(country, cost, min_internet_speed, min_qol, visa_reqs, features):
252
+ # Process country filter
253
+ if country and country.startswith("โœˆ๏ธ All"):
254
+ country = "All"
255
+ else:
256
+ for emoji_code in ["๐Ÿ‡ง๐Ÿ‡ท", "๐Ÿ‡ญ๐Ÿ‡บ", "๐Ÿ‡บ๐Ÿ‡พ", "๐Ÿ‡ต๐Ÿ‡น", "๐Ÿ‡ฌ๐Ÿ‡ช", "๐Ÿ‡น๐Ÿ‡ญ", "๐Ÿ‡ฆ๐Ÿ‡ช", "๐Ÿ‡ช๐Ÿ‡ธ", "๐Ÿ‡ฎ๐Ÿ‡น", "๐Ÿ‡จ๐Ÿ‡ฆ", "๐Ÿ‡จ๐Ÿ‡ด", "๐Ÿ‡ฒ๐Ÿ‡ฝ", "๐Ÿ‡ฏ๐Ÿ‡ต", "๐Ÿ‡ฐ๐Ÿ‡ท"]:
257
+ if country and emoji_code in country:
258
+ country = country.split(" ", 1)[1]
259
+ break
260
+
261
+ filtered_df = df.copy()
262
+
263
+ # Basic filters (country and cost)
264
+ if country and country != "All":
265
+ filtered_df = filtered_df[filtered_df["Country"] == country]
266
+
267
+ if cost < df["Monthly Cost Living (USD)"].max():
268
+ cost_mask = (filtered_df["Monthly Cost Living (USD)"] <= cost) & (filtered_df["Monthly Cost Living (USD)"].notna())
269
+ filtered_df = filtered_df[cost_mask]
270
+
271
+ # Advanced filters
272
+ # Internet speed filter
273
+ if min_internet_speed > 0:
274
+ filtered_df = filtered_df[filtered_df["Internet Speed (Mbps)"] >= min_internet_speed]
275
+
276
+ # Quality of life filter
277
+ if min_qol > 5:
278
+ filtered_df = filtered_df[filtered_df["Quality of Life"] >= min_qol]
279
+
280
+ # Visa filters
281
+ if "Has Digital Nomad Visa" in visa_reqs:
282
+ filtered_df = filtered_df[filtered_df["Digital Nomad Visa"] == "Yes"]
283
+
284
+ if "Visa Length โ‰ฅ 12 Months" in visa_reqs:
285
+ filtered_df = filtered_df[filtered_df["Visa Length (Months)"] >= 12]
286
+
287
+ # Special features filters
288
+ if "Coastal Cities" in features:
289
+ coastal_keywords = ["coast", "beach", "sea", "ocean"]
290
+ mask = filtered_df["Key Feature"].str.contains("|".join(coastal_keywords), case=False, na=False)
291
+ filtered_df = filtered_df[mask]
292
+
293
+ if "Cultural Hotspots" in features:
294
+ cultural_keywords = ["cultur", "art", "histor", "heritage"]
295
+ mask = filtered_df["Key Feature"].str.contains("|".join(cultural_keywords), case=False, na=False)
296
+ filtered_df = filtered_df[mask]
297
+
298
+ if "Affordable (<$1000/month)" in features:
299
+ filtered_df = filtered_df[filtered_df["Monthly Cost Living (USD)"] < 1000]
300
+
301
+ return style_dataframe(filtered_df)
302
 
303
+ # Connect all filters to use the advanced filter function
304
+ country_dropdown.change(
305
+ apply_advanced_filters,
306
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
307
+ data_table
308
+ )
309
+ cost_slider.change(
310
+ apply_advanced_filters,
311
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
312
+ data_table
313
+ )
314
+ min_internet.change(
315
+ apply_advanced_filters,
316
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
317
+ data_table
318
+ )
319
+ min_quality.change(
320
+ apply_advanced_filters,
321
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
322
+ data_table
323
+ )
324
+ visa_filter.change(
325
+ apply_advanced_filters,
326
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
327
+ data_table
328
+ )
329
+ special_features.change(
330
+ apply_advanced_filters,
331
+ [country_dropdown, cost_slider, min_internet, min_quality, visa_filter, special_features],
332
+ data_table
333
+ )
334
+
335
+ with gr.Row():
336
+ with gr.Column(scale=1):
337
+ gr.Markdown("### ๐Ÿงณ Digital Nomad Tips")
338
+ gr.Markdown("- Look for places with digital nomad visas for longer stays \n"
339
+ "- Consider internet speed if you need to attend video meetings \n"
340
+ "- Balance cost of living with quality of life for the best experience \n"
341
+ "- Some newer nomad destinations may have incomplete data")
342
+
343
+
344
+ gr.Markdown("### ๐ŸŽฏ Find Your Ideal Destination")
345
+ with gr.Row():
346
+ with gr.Column():
347
+ priority = gr.CheckboxGroup(
348
+ ["Best Quality of Life", "Fastest Internet", "Most Affordable", "Balance of All Factors"],
349
+ label="What are Your Priorities?",
350
+ value=["Balance of All Factors"]
351
+ )
352
+
353
+ find_btn = gr.Button("Find My Ideal Destination", variant="primary")
354
+
355
+ recommendation = gr.Textbox(label="Recommended Location", lines=3)
356
+
357
+ def recommend_location(priorities, max_budget):
358
+ if not priorities:
359
+ return "Please select at least one priority to get a recommendation."
360
+
361
+ # Filter by budget first
362
+ budget_filtered_df = df[df["Monthly Cost Living (USD)"] <= max_budget]
363
+
364
+ # If no cities match the budget, use the full dataset but mention it
365
+ budget_warning = ""
366
+ if len(budget_filtered_df) == 0:
367
+ budget_filtered_df = df
368
+ budget_warning = "โš ๏ธ No cities match your budget. Showing best options regardless of cost.\n\n"
369
+
370
+ recommendations = []
371
+
372
+ if "Best Quality of Life" in priorities:
373
+ top_city = budget_filtered_df.sort_values("Quality of Life", ascending=False).iloc[0]
374
+ message = f"๐ŸŒŸ {top_city['City']}, {top_city['Country']} - Quality of Life: {top_city['Quality of Life']}\n"
375
+ message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
376
+ message += f"Key Feature: {top_city['Key Feature']}"
377
+ recommendations.append(message)
378
+
379
+ if "Fastest Internet" in priorities:
380
+ top_city = budget_filtered_df.sort_values("Internet Speed (Mbps)", ascending=False).iloc[0]
381
+ message = f"๐Ÿš€ {top_city['City']}, {top_city['Country']} - Internet Speed: {top_city['Internet Speed (Mbps)']} Mbps\n"
382
+ message += f"Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
383
+ message += f"Key Feature: {top_city['Key Feature']}"
384
+ recommendations.append(message)
385
+
386
+ if "Most Affordable" in priorities:
387
+ top_city = budget_filtered_df.sort_values("Monthly Cost Living (USD)", ascending=True).iloc[0]
388
+ message = f"๐Ÿ’ฐ {top_city['City']}, {top_city['Country']} - Monthly Cost: ${top_city['Monthly Cost Living (USD)']}\n"
389
+ message += f"Quality of Life: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps\n"
390
+ message += f"Key Feature: {top_city['Key Feature']}"
391
+ recommendations.append(message)
392
+
393
+ if "Balance of All Factors" in priorities:
394
+ # Create a composite score
395
+ df_temp = budget_filtered_df.copy()
396
+ # Normalize and weight each factor
397
+ df_temp['quality_norm'] = df_temp['Quality of Life'] / 10
398
+ df_temp['internet_norm'] = df_temp['Internet Speed (Mbps)'] / 400
399
+ df_temp['cost_norm'] = 1 - (df_temp['Monthly Cost Living (USD)'] / 4000)
400
+
401
+ df_temp['composite_score'] = (df_temp['quality_norm'] + df_temp['internet_norm'] + df_temp['cost_norm']) / 3
402
+ top_city = df_temp.sort_values("composite_score", ascending=False).iloc[0]
403
+
404
+ message = f"โœจ {top_city['City']}, {top_city['Country']} - Balanced Choice\n"
405
+ message += f"Quality: {top_city['Quality of Life']}, Internet: {top_city['Internet Speed (Mbps)']} Mbps, Cost: ${top_city['Monthly Cost Living (USD)']}\n"
406
+ message += f"Key Feature: {top_city['Key Feature']}"
407
+ recommendations.append(message)
408
+
409
+ return budget_warning + "\n\n".join(recommendations)
410
+
411
+ find_btn.click(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
412
+
413
+ # Also update when budget slider changes
414
+ cost_slider.change(recommend_location, inputs=[priority, cost_slider], outputs=recommendation)
415
+
416
  demo.launch()