Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,9 +6,8 @@ import pandas as pd
|
|
| 6 |
from langchain.document_loaders.csv_loader import CSVLoader
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
from langchain.vectorstores import FAISS
|
| 9 |
-
from langchain.llms import
|
| 10 |
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 12 |
|
| 13 |
# Global model cache
|
| 14 |
MODEL_CACHE = {
|
|
@@ -20,36 +19,19 @@ MODEL_CACHE = {
|
|
| 20 |
os.makedirs("user_data", exist_ok=True)
|
| 21 |
|
| 22 |
def initialize_model_once():
|
| 23 |
-
"""Initialize model once using
|
| 24 |
with MODEL_CACHE["init_lock"]:
|
| 25 |
if MODEL_CACHE["model"] is None:
|
| 26 |
-
# Load model
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# Model with low precision
|
| 33 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
-
model_id,
|
| 35 |
-
token=os.environ.get("HF_TOKEN"),
|
| 36 |
-
device_map="auto",
|
| 37 |
-
load_in_8bit=True # Quantize model to 8-bit precision
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
# Create pipeline
|
| 41 |
-
pipe = pipeline(
|
| 42 |
-
"text-generation",
|
| 43 |
-
model=model,
|
| 44 |
-
tokenizer=tokenizer,
|
| 45 |
max_new_tokens=512,
|
| 46 |
temperature=0.2,
|
| 47 |
top_p=0.9,
|
| 48 |
repetition_penalty=1.2
|
| 49 |
)
|
| 50 |
-
|
| 51 |
-
# Create LangChain wrapper
|
| 52 |
-
MODEL_CACHE["model"] = HuggingFacePipeline(pipeline=pipe)
|
| 53 |
|
| 54 |
return MODEL_CACHE["model"]
|
| 55 |
|
|
@@ -91,7 +73,7 @@ class ChatBot:
|
|
| 91 |
db_path = f"{self.user_dir}/db_faiss"
|
| 92 |
embeddings = HuggingFaceEmbeddings(
|
| 93 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 94 |
-
model_kwargs={'device': '
|
| 95 |
)
|
| 96 |
|
| 97 |
db = FAISS.from_documents(data, embeddings)
|
|
@@ -105,7 +87,8 @@ class ChatBot:
|
|
| 105 |
llm = initialize_model_once()
|
| 106 |
self.chain = ConversationalRetrievalChain.from_llm(
|
| 107 |
llm=llm,
|
| 108 |
-
retriever=db.as_retriever(search_kwargs={"k": 4})
|
|
|
|
| 109 |
)
|
| 110 |
print("Chain created successfully")
|
| 111 |
except Exception as e:
|
|
@@ -115,7 +98,7 @@ class ChatBot:
|
|
| 115 |
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
|
| 116 |
self.chat_history.append(("System", file_info))
|
| 117 |
|
| 118 |
-
return "File CSV berhasil diproses! Anda dapat mulai chat dengan
|
| 119 |
except Exception as e:
|
| 120 |
import traceback
|
| 121 |
print(traceback.format_exc())
|
|
@@ -131,6 +114,15 @@ class ChatBot:
|
|
| 131 |
|
| 132 |
# Update chat history
|
| 133 |
answer = result["answer"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
self.chat_history.append((message, answer))
|
| 135 |
|
| 136 |
return answer
|
|
@@ -141,12 +133,12 @@ class ChatBot:
|
|
| 141 |
|
| 142 |
# UI Code dan handler functions sama seperti sebelumnya
|
| 143 |
def create_gradio_interface():
|
| 144 |
-
with gr.Blocks(title="Chat with CSV using
|
| 145 |
session_id = gr.State(lambda: str(uuid.uuid4()))
|
| 146 |
chatbot_state = gr.State(lambda: None)
|
| 147 |
|
| 148 |
-
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using
|
| 149 |
-
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang
|
| 150 |
|
| 151 |
with gr.Row():
|
| 152 |
with gr.Column(scale=1):
|
|
@@ -158,11 +150,11 @@ def create_gradio_interface():
|
|
| 158 |
|
| 159 |
with gr.Accordion("Informasi Model", open=False):
|
| 160 |
gr.Markdown("""
|
| 161 |
-
**Model**:
|
| 162 |
|
| 163 |
**Fitur**:
|
| 164 |
-
-
|
| 165 |
-
-
|
| 166 |
- Manajemen sesi per pengguna
|
| 167 |
""")
|
| 168 |
|
|
|
|
| 6 |
from langchain.document_loaders.csv_loader import CSVLoader
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
from langchain.vectorstores import FAISS
|
| 9 |
+
from langchain.llms import CTransformers
|
| 10 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
| 11 |
|
| 12 |
# Global model cache
|
| 13 |
MODEL_CACHE = {
|
|
|
|
| 19 |
os.makedirs("user_data", exist_ok=True)
|
| 20 |
|
| 21 |
def initialize_model_once():
|
| 22 |
+
"""Initialize model once using CTransformers API"""
|
| 23 |
with MODEL_CACHE["init_lock"]:
|
| 24 |
if MODEL_CACHE["model"] is None:
|
| 25 |
+
# Load Mistral-7B-Instruct-v0.2.Q4_K_M.gguf model
|
| 26 |
+
MODEL_CACHE["model"] = CTransformers(
|
| 27 |
+
model="TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 28 |
+
model_file="mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
| 29 |
+
model_type="mistral",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
max_new_tokens=512,
|
| 31 |
temperature=0.2,
|
| 32 |
top_p=0.9,
|
| 33 |
repetition_penalty=1.2
|
| 34 |
)
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
return MODEL_CACHE["model"]
|
| 37 |
|
|
|
|
| 73 |
db_path = f"{self.user_dir}/db_faiss"
|
| 74 |
embeddings = HuggingFaceEmbeddings(
|
| 75 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 76 |
+
model_kwargs={'device': 'cpu'} # Explicitly set to CPU
|
| 77 |
)
|
| 78 |
|
| 79 |
db = FAISS.from_documents(data, embeddings)
|
|
|
|
| 87 |
llm = initialize_model_once()
|
| 88 |
self.chain = ConversationalRetrievalChain.from_llm(
|
| 89 |
llm=llm,
|
| 90 |
+
retriever=db.as_retriever(search_kwargs={"k": 4}),
|
| 91 |
+
return_source_documents=True
|
| 92 |
)
|
| 93 |
print("Chain created successfully")
|
| 94 |
except Exception as e:
|
|
|
|
| 98 |
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
|
| 99 |
self.chat_history.append(("System", file_info))
|
| 100 |
|
| 101 |
+
return "File CSV berhasil diproses! Anda dapat mulai chat dengan Mistral 7B."
|
| 102 |
except Exception as e:
|
| 103 |
import traceback
|
| 104 |
print(traceback.format_exc())
|
|
|
|
| 114 |
|
| 115 |
# Update chat history
|
| 116 |
answer = result["answer"]
|
| 117 |
+
|
| 118 |
+
# Optional: Add source info to answer
|
| 119 |
+
sources = result.get("source_documents", [])
|
| 120 |
+
if sources:
|
| 121 |
+
source_text = "\n\nSumber:\n"
|
| 122 |
+
for i, doc in enumerate(sources[:2], 1): # Limit to top 2 sources
|
| 123 |
+
source_text += f"{i}. {doc.page_content[:100]}...\n"
|
| 124 |
+
answer += source_text
|
| 125 |
+
|
| 126 |
self.chat_history.append((message, answer))
|
| 127 |
|
| 128 |
return answer
|
|
|
|
| 133 |
|
| 134 |
# UI Code dan handler functions sama seperti sebelumnya
|
| 135 |
def create_gradio_interface():
|
| 136 |
+
with gr.Blocks(title="Chat with CSV using Mistral 7B") as interface:
|
| 137 |
session_id = gr.State(lambda: str(uuid.uuid4()))
|
| 138 |
chatbot_state = gr.State(lambda: None)
|
| 139 |
|
| 140 |
+
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using Mistral 7B</h1>")
|
| 141 |
+
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang powerful</h3>")
|
| 142 |
|
| 143 |
with gr.Row():
|
| 144 |
with gr.Column(scale=1):
|
|
|
|
| 150 |
|
| 151 |
with gr.Accordion("Informasi Model", open=False):
|
| 152 |
gr.Markdown("""
|
| 153 |
+
**Model**: Mistral-7B-Instruct-v0.2-GGUF
|
| 154 |
|
| 155 |
**Fitur**:
|
| 156 |
+
- GGUF model yang dioptimalkan untuk CPU
|
| 157 |
+
- Efisien untuk analisis data dan percakapan
|
| 158 |
- Manajemen sesi per pengguna
|
| 159 |
""")
|
| 160 |
|