Spaces:
Sleeping
Sleeping
File size: 38,869 Bytes
add0a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "98d53c05"
},
"source": [
"## Saving a Cats v Dogs Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a minimal example showing how to train a fastai model on Kaggle, and save it so you can use it in your app."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, import all the stuff we need from fastai:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "44eb0ad3"
},
"outputs": [],
"source": [
"from fastai.vision.all import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download and decompress our dataset, which is pictures of dogs and cats:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = untar_data(URLs.PETS)/'images'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We need a way to label our images as dogs or cats. In this dataset, pictures of cats are given a filename that starts with a capital letter:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "44eb0ad3"
},
"outputs": [],
"source": [
"def is_cat(x): return x[0].isupper() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can create our `DataLoaders`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "44eb0ad3"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/hoanganh/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/data/transforms.py:225: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead\n",
" if is_categorical_dtype(col):\n"
]
}
],
"source": [
"dls = ImageDataLoaders.from_name_func('.',\n",
" get_image_files(path), valid_pct=0.2, seed=42,\n",
" label_func=is_cat,\n",
" item_tfms=Resize(192))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"... and train our model, a resnet18 (to keep it small and fast):"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "c107f724",
"outputId": "fcc1de68-7c8b-43f5-b9eb-fcdb0773ef07"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/hoanganh/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
" warnings.warn(\n",
"/home/hoanganh/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.\n",
" warnings.warn(msg)\n"
]
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" 0.00% [0/1 00:00<?]\n",
" </div>\n",
" \n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>error_rate</th>\n",
" <th>time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table><p>\n",
"\n",
" <div>\n",
" <progress value='10' class='' max='92' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" 10.87% [10/92 00:10<01:23 1.0313]\n",
" </div>\n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m learn \u001b[38;5;241m=\u001b[39m vision_learner(dls, resnet18, metrics\u001b[38;5;241m=\u001b[39merror_rate)\n\u001b[0;32m----> 2\u001b[0m \u001b[43mlearn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfine_tune\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/callback/schedule.py:165\u001b[0m, in \u001b[0;36mfine_tune\u001b[0;34m(self, epochs, base_lr, freeze_epochs, lr_mult, pct_start, div, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFine tune with `Learner.freeze` for `freeze_epochs`, then with `Learner.unfreeze` for `epochs`, using discriminative LR.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfreeze()\n\u001b[0;32m--> 165\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_one_cycle\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfreeze_epochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mslice\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mbase_lr\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpct_start\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.99\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m base_lr \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[1;32m 167\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munfreeze()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/callback/schedule.py:119\u001b[0m, in \u001b[0;36mfit_one_cycle\u001b[0;34m(self, n_epoch, lr_max, div, div_final, pct_start, wd, moms, cbs, reset_opt, start_epoch)\u001b[0m\n\u001b[1;32m 116\u001b[0m lr_max \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray([h[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlr\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m h \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mopt\u001b[38;5;241m.\u001b[39mhypers])\n\u001b[1;32m 117\u001b[0m scheds \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlr\u001b[39m\u001b[38;5;124m'\u001b[39m: combined_cos(pct_start, lr_max\u001b[38;5;241m/\u001b[39mdiv, lr_max, lr_max\u001b[38;5;241m/\u001b[39mdiv_final),\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmom\u001b[39m\u001b[38;5;124m'\u001b[39m: combined_cos(pct_start, \u001b[38;5;241m*\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmoms \u001b[38;5;28;01mif\u001b[39;00m moms \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m moms))}\n\u001b[0;32m--> 119\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_epoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcbs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mParamScheduler\u001b[49m\u001b[43m(\u001b[49m\u001b[43mscheds\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43mL\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcbs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreset_opt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreset_opt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwd\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_epoch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart_epoch\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:264\u001b[0m, in \u001b[0;36mLearner.fit\u001b[0;34m(self, n_epoch, lr, wd, cbs, reset_opt, start_epoch)\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mopt\u001b[38;5;241m.\u001b[39mset_hypers(lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlr \u001b[38;5;28;01mif\u001b[39;00m lr \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m lr)\n\u001b[1;32m 263\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epoch \u001b[38;5;241m=\u001b[39m n_epoch\n\u001b[0;32m--> 264\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_fit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfit\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelFitException\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_end_cleanup\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:199\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:253\u001b[0m, in \u001b[0;36mLearner._do_fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epoch):\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mepoch\u001b[38;5;241m=\u001b[39mepoch\n\u001b[0;32m--> 253\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_epoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mepoch\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelEpochException\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:199\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:247\u001b[0m, in \u001b[0;36mLearner._do_epoch\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 246\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_epoch\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 247\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_epoch_train\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_do_epoch_validate()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:239\u001b[0m, in \u001b[0;36mLearner._do_epoch_train\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_epoch_train\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 238\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdls\u001b[38;5;241m.\u001b[39mtrain\n\u001b[0;32m--> 239\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mall_batches\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelTrainException\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:199\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:205\u001b[0m, in \u001b[0;36mLearner.all_batches\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mall_batches\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 204\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_iter \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl)\n\u001b[0;32m--> 205\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m o \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdl): \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mone_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mo\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:235\u001b[0m, in \u001b[0;36mLearner.one_batch\u001b[0;34m(self, i, b)\u001b[0m\n\u001b[1;32m 233\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_set_device(b)\n\u001b[1;32m 234\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_split(b)\n\u001b[0;32m--> 235\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_with_events\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_one_batch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbatch\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCancelBatchException\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:199\u001b[0m, in \u001b[0;36mLearner._with_events\u001b[0;34m(self, f, event_type, ex, final)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_with_events\u001b[39m(\u001b[38;5;28mself\u001b[39m, f, event_type, ex, final\u001b[38;5;241m=\u001b[39mnoop):\n\u001b[0;32m--> 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbefore_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ex: \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_cancel_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mevent_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m); final()\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/fastai/learner.py:216\u001b[0m, in \u001b[0;36mLearner._do_one_batch\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_one_batch\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 216\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mxb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m \u001b[38;5;28mself\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mafter_pred\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39myb):\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/container.py:217\u001b[0m, in \u001b[0;36mSequential.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m):\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m--> 217\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mmodule\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28minput\u001b[39m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/container.py:217\u001b[0m, in \u001b[0;36mSequential.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m):\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m--> 217\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mmodule\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28minput\u001b[39m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/container.py:217\u001b[0m, in \u001b[0;36mSequential.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m):\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m--> 217\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mmodule\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28minput\u001b[39m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torchvision/models/resnet.py:96\u001b[0m, in \u001b[0;36mBasicBlock.forward\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 93\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbn1(out)\n\u001b[1;32m 94\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrelu(out)\n\u001b[0;32m---> 96\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconv2\u001b[49m\u001b[43m(\u001b[49m\u001b[43mout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 97\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbn2(out)\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdownsample \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/conv.py:463\u001b[0m, in \u001b[0;36mConv2d.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tensor:\n\u001b[0;32m--> 463\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_conv_forward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbias\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/mambaforge/envs/fastcourse/lib/python3.10/site-packages/torch/nn/modules/conv.py:459\u001b[0m, in \u001b[0;36mConv2d._conv_forward\u001b[0;34m(self, input, weight, bias)\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpadding_mode \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mzeros\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m F\u001b[38;5;241m.\u001b[39mconv2d(F\u001b[38;5;241m.\u001b[39mpad(\u001b[38;5;28minput\u001b[39m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reversed_padding_repeated_twice, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpadding_mode),\n\u001b[1;32m 457\u001b[0m weight, bias, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstride,\n\u001b[1;32m 458\u001b[0m _pair(\u001b[38;5;241m0\u001b[39m), \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdilation, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroups)\n\u001b[0;32m--> 459\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconv2d\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbias\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstride\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 460\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpadding\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdilation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroups\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"learn = vision_learner(dls, resnet18, metrics=error_rate)\n",
"learn.fine_tune(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can export our trained `Learner`. This contains all the information needed to run the model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ae2bc6ac"
},
"outputs": [],
"source": [
"learn.export('model.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q2HTrQKTf3BV"
},
"source": [
"Finally, open the Kaggle sidebar on the right if it's not already, and find the section marked \"Output\". Open the `/kaggle/working` folder, and you'll see `model.pkl`. Click on it, then click on the menu on the right that appears, and choose \"Download\". After a few seconds, your model will be downloaded to your computer, where you can then create your app that uses the model."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|