from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() im = PILImage.create('dog.jpeg') im.thumbnail((192,192)) learn = load_learner('model.pkl') categories = ('dog', 'cat') def classify_image(img): pred, idx, prob = learn.predict(img) return dict(zip(categories, map(float, prob))) classify_image(im) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['dog.jpeg', 'cat.jpeg', 'geow.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)