Spaces:
Sleeping
Sleeping
File size: 10,151 Bytes
a098bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
from dotenv import load_dotenv
import langchain_google_genai as genai
import streamlit as st
from sentence_transformers import SentenceTransformer
import os
import pymongo
from langchain_google_genai import ChatGoogleGenerativeAI
from sentence_transformers import CrossEncoder
from typing import List, Dict, Any, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough, RunnableMap
import time
def safe_log_info(message):
print(f"INFO: {message}")
def safe_log_warning(message):
print(f"WARNING: {message}")
def safe_log_error(message, exc_info=False):
print(f"ERROR: {message}")
if exc_info:
import traceback
traceback.print_exc()
safe_log_error("Error occurred during logging", exc_info=True)
load_dotenv()
google_api_key = os.environ.get("GOOGLE_API_KEY")
mongo_uri = os.environ.get("MONGODB_URI")
@st.cache_resource
def load_generative_model():
llm = ChatGoogleGenerativeAI(
model = 'models/gemini-2.0-flash',
temperature=0.2,
max_tokens = None,
timeout = 180,
max_retries = 2,
convert_system_message_to_human= True,
api_key = google_api_key
)
return llm
@st.cache_resource
def load_embedding_model():
embedding_model = SentenceTransformer("namdp-ptit/Vidense")
return embedding_model
@st.cache_resource
def load_mongo_collection():
client = pymongo.MongoClient(mongo_uri)
db = client['vietnamese-llms']
collection = db['vietnamese-llms-data']
return collection
@st.cache_resource
def load_reranker():
reranker = CrossEncoder("namdp-ptit/ViRanker")
return reranker
def get_embedding(text: str) -> list[float]:
embedding_model = load_embedding_model()
embedding = embedding_model.encode(text).tolist()
return embedding
def find_similar_documents_hybrid_search(
query_vector: list[float],
search_query: str,
limit: int = 10,
candidates: int = 20,
vector_search_index: str = "embedding_search",
atlas_search_index: str = "header_text"
) -> list[dict]:
"""
Hybrid search combining vector and text search with parallel execution.
"""
all_results = []
collection = load_mongo_collection()
def perform_vector_search():
"""Perform vector search in parallel."""
try:
vector_pipeline = [
{
"$vectorSearch": {
"index": vector_search_index,
"path": "embedding",
"queryVector": query_vector,
"limit": limit,
"numCandidates": candidates
}
},
{
"$project": {
'_id': 1,
'header' : 1,
'content': 1,
"vector_score": {"$meta": "vectorSearchScore"}
}
}
]
vector_results = list(collection.aggregate(vector_pipeline))
safe_log_info(f"Vector search returned {len(vector_results)} results")
for doc in vector_results:
doc['search_type'] = 'vector'
doc['combined_score'] = doc.get('vector_score', 0) * 0.6 # Weight vector score
return vector_results
except Exception as e:
safe_log_warning(f"Vector search failed: {e}")
return []
def perform_text_search():
"""Perform text search in parallel."""
if not search_query or not search_query.strip():
return []
try:
text_pipeline = [
{
"$search": {
"index": atlas_search_index,
"compound": {
"must": [
{
"text": {
"query": search_query,
"path": ["header", "content"]
}
}
]
}
}
},
{
"$project": {
'_id': 1,
'header': 1,
'content': 1,
"text_score": {"$meta": "searchScore"}
}
}
]
text_results = list(collection.aggregate(text_pipeline))
safe_log_info(f"Text search returned {len(text_results)} results")
for doc in text_results:
doc['search_type'] = 'text'
doc['combined_score'] = doc.get('text_score', 0) * 0.4 # Weight text score
return text_results
except Exception as e:
safe_log_warning(f"Text search failed: {e}")
return []
try:
# Run both searches in parallel
start_time = time.time()
with ThreadPoolExecutor(max_workers=2) as executor:
vector_future = executor.submit(perform_vector_search)
text_future = executor.submit(perform_text_search)
# Collect results as they complete
for future in as_completed([vector_future, text_future]):
try:
results = future.result()
all_results.extend(results)
except Exception as e:
safe_log_error(f"Error in parallel search: {e}")
search_time = time.time() - start_time
safe_log_info(f"Parallel search completed in {search_time:.3f}s")
# 3. Merge và deduplicate results
seen_ids = set()
merged_results = []
for doc in all_results:
doc_id = str(doc['_id'])
if doc_id not in seen_ids:
seen_ids.add(doc_id)
# Clean up the document for final result
final_doc = {
'_id': doc['_id'],
'content': doc.get('content', ''),
# 'uploader_username': doc.get('uploader_username', ''), # Removed
'header': doc.get('header', ''),
'score': doc.get('combined_score', 0)
}
merged_results.append(final_doc)
else:
# If document already exists, boost its score
for existing_doc in merged_results:
if str(existing_doc['_id']) == doc_id:
existing_doc['score'] += doc.get('combined_score', 0) * 0.5
break
# Sort by combined score
merged_results.sort(key=lambda x: x.get('score', 0), reverse=True)
# Return top results
final_results = merged_results[:limit]
safe_log_info(f"Hybrid search final results: {len(final_results)} documents")
return final_results
except Exception as e:
safe_log_error(f"Error in hybrid search: {e}", exc_info=True)
def rerank_documents(query: str, documents: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Reranks a list of documents based on their relevance to the query using a reranker model.
Args:
query: The original search query.
documents: A list of dictionaries, where each dictionary represents a document
and contains a 'content' key with the document's text.
Returns:
A list of dictionaries representing the reranked documents, sorted by relevance score.
"""
if not documents:
return []
reranker_model = load_reranker()
# Prepare pairs for the reranker model
sentence_pairs = [[query, doc.get('content', '')] for doc in documents]
# Get reranking scores
rerank_scores = reranker_model.predict(sentence_pairs)
# Add reranking scores to the documents
for i, doc in enumerate(documents):
doc['rerank_score'] = float(rerank_scores[i]) # Convert to float for potential serialization
# Sort documents by reranking score in descending order
reranked_documents = sorted(documents, key=lambda x: x.get('rerank_score', -1), reverse=True)
return reranked_documents
def format_docs(docs):
return "\n\n".join([doc.get('header', '') + doc.get('content', '') for doc in docs if isinstance(doc, dict) and 'content' in doc and 'header' in doc])
def get_answer_with_rag(query:str) -> str:
revised_template = ChatPromptTemplate.from_messages([
('system', """bạn là một trợ lý AI thân thiện, được thiết kế để giúp khám phá mọi điều về Học viện Bưu chính Viễn thông (PTIT).
Bạn sẽ sử dụng thông tin được cung cấp để trả lời các câu hỏi của người dùng một cách chi tiết và dễ hiểu nhất.
Hãy nhớ rằng, bạn chỉ có thể trả lời dựa trên thông tin bạn cung cấp. Nếu câu hỏi nằm ngoài phạm vi thông tin đó, bạn sẽ cho người dùng biết."""),
('human', "Thông tin tham khảo:\n```\n{context}\n```\n\nCâu hỏi của tôi:\n{question}")
])
llm = load_generative_model()
query_embedding = get_embedding(query)
context_docs = find_similar_documents_hybrid_search(
query_vector=query_embedding,
search_query=query,
limit=10,
candidates=20,
vector_search_index="embedding_search",
atlas_search_index="header_text"
)
reranked_docs = rerank_documents(query, context_docs)
top_n_docs = reranked_docs[:10]
context = format_docs(top_n_docs)
chain = (
RunnableMap({
"context": RunnablePassthrough(),
"question": RunnablePassthrough()
})
| revised_template
| llm
| StrOutputParser()
)
response = chain.invoke({
"context": context,
"question": query})
return response |