Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,6 @@
|
|
1 |
-
import
|
2 |
-
import boto3
|
3 |
-
from sagemaker.huggingface import HuggingFaceModel
|
4 |
|
5 |
-
|
6 |
-
role = sagemaker.get_execution_role()
|
7 |
-
except ValueError:
|
8 |
-
iam = boto3.client('iam')
|
9 |
-
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
'HF_MODEL_ID':'cloudqi/cqi_text_to_image_pt_v0',
|
14 |
-
'HF_TASK':'text-to-image'
|
15 |
-
}
|
16 |
-
|
17 |
-
# create Hugging Face Model Class
|
18 |
-
huggingface_model = HuggingFaceModel(
|
19 |
-
transformers_version='4.37.0',
|
20 |
-
pytorch_version='2.1.0',
|
21 |
-
py_version='py310',
|
22 |
-
env=hub,
|
23 |
-
role=role,
|
24 |
-
)
|
25 |
-
|
26 |
-
# deploy model to SageMaker Inference
|
27 |
-
predictor = huggingface_model.deploy(
|
28 |
-
initial_instance_count=1, # number of instances
|
29 |
-
instance_type='ml.m5.xlarge' # ec2 instance type
|
30 |
-
)
|
31 |
-
|
32 |
-
image_bytes = predictor.predict({
|
33 |
-
"inputs": "Astronaut riding a horse",
|
34 |
-
})
|
35 |
-
# You can access the image with PIL.Image for example
|
36 |
-
import io
|
37 |
-
from PIL import Image
|
38 |
-
image = Image.open(io.BytesIO(image_bytes))
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
2 |
|
3 |
+
pipe = DiffusionPipeline.from_pretrained("cloudqi/cqi_text_to_image_pt_v0")
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
prompt = "Gato em alta qualidade na neve\n"
|
6 |
+
image = pipe(prompt).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|