ME
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,201 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import webbrowser
|
5 |
+
from io import StringIO
|
6 |
+
from groq import Groq
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
|
9 |
+
# Initialize session state
|
10 |
+
if 'original_resume' not in st.session_state:
|
11 |
+
st.session_state['original_resume'] = None
|
12 |
+
if 'keywords' not in st.session_state:
|
13 |
+
st.session_state['keywords'] = None
|
14 |
+
if 'tailored_resume' not in st.session_state:
|
15 |
+
st.session_state['tailored_resume'] = None
|
16 |
+
|
17 |
+
def scrape_website(url):
|
18 |
+
response = requests.get(url)
|
19 |
+
response.raise_for_status()
|
20 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
21 |
+
return soup.get_text()
|
22 |
+
|
23 |
+
def extract_keywords(job_description, client):
|
24 |
+
completion = client.chat.completions.create(
|
25 |
+
model="llama-3.1-70b-versatile",
|
26 |
+
messages=[
|
27 |
+
{
|
28 |
+
"role": "system",
|
29 |
+
"content": (
|
30 |
+
"You are an expert in extracting essential information from job postings for optimal ATS compatibility. "
|
31 |
+
"Focus on identifying keywords and skills, prioritized by importance."
|
32 |
+
)
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"role": "user",
|
36 |
+
"content": (
|
37 |
+
f"Extract keywords from this job posting and categorize them by importance. "
|
38 |
+
f"Return as JSON with exactly these keys: 'high', 'medium', and 'low' containing arrays of strings.\n\n{job_description}"
|
39 |
+
)
|
40 |
+
}
|
41 |
+
],
|
42 |
+
temperature=1,
|
43 |
+
max_tokens=4096,
|
44 |
+
response_format={"type": "json_object"}
|
45 |
+
)
|
46 |
+
return json.loads(completion.choices[0].message.content)
|
47 |
+
|
48 |
+
def adapt_resume(resume_data, keywords, job_description, client):
|
49 |
+
completion = client.chat.completions.create(
|
50 |
+
model="llama-3.1-8b-instant",
|
51 |
+
messages=[
|
52 |
+
{
|
53 |
+
"role": "system",
|
54 |
+
"content": (
|
55 |
+
"You are a CV coach skilled in resume customization and JSON formatting. "
|
56 |
+
"Tailor the resume to emphasize relevant keywords while maintaining factual accuracy."
|
57 |
+
)
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"role": "user",
|
61 |
+
"content": f"Keywords: {json.dumps(keywords)}\nResume: {json.dumps(resume_data)}\nJob Description: {job_description}"
|
62 |
+
}
|
63 |
+
],
|
64 |
+
temperature=0.9,
|
65 |
+
max_tokens=8000,
|
66 |
+
response_format={"type": "json_object"}
|
67 |
+
)
|
68 |
+
return json.loads(completion.choices[0].message.content)
|
69 |
+
|
70 |
+
def calculate_resume_match(resume_data, keywords):
|
71 |
+
"""Calculate match score between resume and keywords"""
|
72 |
+
resume_text = json.dumps(resume_data).lower()
|
73 |
+
total_score = 0
|
74 |
+
matches = {'high': [], 'medium': [], 'low': []}
|
75 |
+
|
76 |
+
# Weight multipliers for different priority levels
|
77 |
+
weights = {"high": 3, "medium": 2, "low": 1}
|
78 |
+
|
79 |
+
# Ensure keywords has the expected structure
|
80 |
+
if not all(key in keywords for key in ['high', 'medium', 'low']):
|
81 |
+
raise ValueError("Keywords must contain 'high', 'medium', and 'low' arrays")
|
82 |
+
|
83 |
+
for priority in ['high', 'medium', 'low']:
|
84 |
+
priority_score = 0
|
85 |
+
priority_matches = []
|
86 |
+
|
87 |
+
for word in keywords[priority]:
|
88 |
+
word = word.lower()
|
89 |
+
if word in resume_text:
|
90 |
+
priority_score += weights[priority]
|
91 |
+
priority_matches.append(word)
|
92 |
+
|
93 |
+
matches[priority] = priority_matches
|
94 |
+
total_score += priority_score
|
95 |
+
|
96 |
+
# Normalize score to 0-100
|
97 |
+
max_possible = sum(len(keywords[p]) * weights[p] for p in ['high', 'medium', 'low'])
|
98 |
+
normalized_score = (total_score / max_possible * 100) if max_possible > 0 else 0
|
99 |
+
|
100 |
+
return normalized_score, matches
|
101 |
+
|
102 |
+
# Page config
|
103 |
+
st.set_page_config(page_title="Resume Tailor", page_icon="π", layout="wide")
|
104 |
+
|
105 |
+
# Header
|
106 |
+
st.title("π― AI Resume Tailor")
|
107 |
+
st.markdown("### Transform your resume for your dream job")
|
108 |
+
|
109 |
+
# Sidebar with API key
|
110 |
+
with st.sidebar:
|
111 |
+
api_key = st.text_input(
|
112 |
+
"Groq API Key",
|
113 |
+
type="password",
|
114 |
+
help="Get your API key at https://console.groq.com/keys"
|
115 |
+
)
|
116 |
+
if not api_key:
|
117 |
+
st.markdown("[Get API Key](https://console.groq.com/keys)")
|
118 |
+
|
119 |
+
# Main input section
|
120 |
+
col1, col2 = st.columns(2)
|
121 |
+
with col1:
|
122 |
+
job_url = st.text_input("Job Posting URL", placeholder="https://...")
|
123 |
+
with col2:
|
124 |
+
resume_file = st.file_uploader("Upload Resume (JSON)", type="json")
|
125 |
+
if resume_file:
|
126 |
+
resume_str = StringIO(resume_file.getvalue().decode("utf-8"))
|
127 |
+
st.session_state['original_resume'] = json.load(resume_str)
|
128 |
+
|
129 |
+
# Process button
|
130 |
+
if st.button("π Tailor Resume", type="primary", use_container_width=True):
|
131 |
+
if job_url and api_key and resume_file:
|
132 |
+
try:
|
133 |
+
with st.status("π Processing...") as status:
|
134 |
+
# Initialize client
|
135 |
+
client = Groq(api_key=api_key)
|
136 |
+
|
137 |
+
# Scrape and process
|
138 |
+
status.update(label="Analyzing job posting...")
|
139 |
+
job_description = scrape_website(job_url)
|
140 |
+
keywords = extract_keywords(job_description, client)
|
141 |
+
st.session_state['keywords'] = keywords
|
142 |
+
|
143 |
+
status.update(label="Tailoring resume...")
|
144 |
+
tailored_resume = adapt_resume(
|
145 |
+
st.session_state['original_resume'],
|
146 |
+
keywords,
|
147 |
+
job_description,
|
148 |
+
client
|
149 |
+
)
|
150 |
+
st.session_state['tailored_resume'] = tailored_resume
|
151 |
+
status.update(label="β
Done!", state="complete")
|
152 |
+
|
153 |
+
# Results section
|
154 |
+
st.markdown("---")
|
155 |
+
st.markdown("### π Results")
|
156 |
+
|
157 |
+
# Calculate and display scores
|
158 |
+
original_score, original_matches = calculate_resume_match(
|
159 |
+
st.session_state['original_resume'],
|
160 |
+
st.session_state['keywords']
|
161 |
+
)
|
162 |
+
tailored_score, tailored_matches = calculate_resume_match(
|
163 |
+
st.session_state['tailored_resume'],
|
164 |
+
st.session_state['keywords']
|
165 |
+
)
|
166 |
+
|
167 |
+
score_col1, score_col2 = st.columns(2)
|
168 |
+
with score_col1:
|
169 |
+
st.metric("Original Match", f"{original_score:.1f}%")
|
170 |
+
with score_col2:
|
171 |
+
st.metric("Tailored Match", f"{tailored_score:.1f}%",
|
172 |
+
delta=f"+{tailored_score - original_score:.1f}%")
|
173 |
+
|
174 |
+
# Keyword matches
|
175 |
+
with st.expander("π― View Keyword Matches"):
|
176 |
+
for priority in ['high', 'medium', 'low']:
|
177 |
+
st.subheader(f"{priority.title()} Priority")
|
178 |
+
orig_matches = set(original_matches[priority])
|
179 |
+
new_matches = set(tailored_matches[priority])
|
180 |
+
added = new_matches - orig_matches
|
181 |
+
|
182 |
+
st.write("β Original:", ", ".join(orig_matches) if orig_matches else "None")
|
183 |
+
if added:
|
184 |
+
st.write("β Added:", f"<span style='background-color: #d4edda;'>{', '.join(added)}</span>", unsafe_allow_html=True)
|
185 |
+
|
186 |
+
# Download section
|
187 |
+
st.markdown("### π₯ Download")
|
188 |
+
if st.download_button(
|
189 |
+
"β¬οΈ Download Tailored Resume",
|
190 |
+
data=json.dumps(st.session_state['tailored_resume'], indent=4),
|
191 |
+
file_name="tailored_resume.json",
|
192 |
+
mime="application/json",
|
193 |
+
use_container_width=True
|
194 |
+
):
|
195 |
+
webbrowser.open_new_tab("https://rxresu.me/")
|
196 |
+
st.info("π Opening Resume Builder in new tab...")
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
st.error(f"An error occurred: {str(e)}")
|
200 |
+
else:
|
201 |
+
st.error("Please provide all required inputs")
|