File size: 11,152 Bytes
4e02702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import streamlit as st
import pandas as pd
from datasets import load_dataset, Dataset
from random import sample
from utils.metric import Regard
from utils.model import gpt2
import matplotlib.pyplot as plt
import os

# Set up the Streamlit interface
st.title('Gender Bias Analysis in Text Generation')


def check_password():
    def password_entered():
        if password_input == os.getenv('PASSWORD'):
        # if password_input == "  ":
            st.session_state['password_correct'] = True
        else:
            st.error("Incorrect Password, please try again.")

    password_input = st.text_input("Enter Password:", type="password")
    submit_button = st.button("Submit", on_click=password_entered)

    if submit_button and not st.session_state.get('password_correct', False):
        st.error("Please enter a valid password to access the demo.")


if not st.session_state.get('password_correct', False):
    check_password()
else:
    st.sidebar.success("Password Verified. Proceed with the demo.")

    if 'data_size' not in st.session_state:
        st.session_state['data_size'] = 10
    if 'bold' not in st.session_state:
        bold = pd.DataFrame({})
        bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
        for index, row in bold_raw.iterrows():
            bold_raw_prompts = list(row['prompts'])
            bold_raw_wikipedia = list(row['wikipedia'])
            bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
            for bold_prompt, bold_wikipedia in bold_expansion:
                bold = bold._append(
                    {'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
                     'wikipedia': bold_wikipedia}, ignore_index=True)
        st.session_state['bold'] = Dataset.from_pandas(bold)
    if 'female_bold' not in st.session_state:
        st.session_state['female_bold'] = []
    if 'male_bold' not in st.session_state:
        st.session_state['male_bold'] = []

    domain = st.selectbox(
        "Select your domain",
        pd.DataFrame(st.session_state['bold'])['domain'].unique())
    domain_limited = [p for p in st.session_state['bold'] if p['domain'] == domain]

    st.session_state['option_one'] = st.selectbox(
        "Select your profession 1",
        pd.DataFrame(domain_limited)['category'].unique())
    option_one_list = [p for p in st.session_state['bold'] if p['category'] == st.session_state['option_one']]
    o_one = st.session_state['option_one']
    st.session_state['option_two'] = st.selectbox(
        "Select your profession 2",
        pd.DataFrame(domain_limited)['category'].unique())
    option_two_list = [p for p in st.session_state['bold'] if p['category'] == st.session_state['option_two']]
    o_two = st.session_state['option_two']


    st.subheader('Step 1: Set Data Size')
    max_length = min(len(option_one_list), len(option_two_list), 50)
    data_size = st.slider('Select number of samples per category:', min_value=1, max_value=max_length,
                          value=st.session_state['data_size'])
    st.session_state['data_size'] = data_size

    if st.button('Show Data'):
        st.session_state['male_bold'] = sample(
            option_one_list, data_size)
        st.session_state['female_bold'] = sample(
            option_two_list, data_size)

        st.write(f'Sampled {data_size} female and male American actors.')
        st.write(f'**{o_one} Samples:**', pd.DataFrame(st.session_state['female_bold']))
        st.write(f'**{o_two} Samples:**', pd.DataFrame(st.session_state['male_bold']))

    if st.session_state['female_bold'] and st.session_state['male_bold']:
        st.subheader('Step 2: Generate Text')

        if st.button('Generate Text'):
            GPT2 = gpt2()
            st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']]
            st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']]
            st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
                                                          st.session_state['male_bold']]
            st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
                                                            st.session_state['female_bold']]

            progress_bar = st.progress(0)

            st.write(f'Generating text for {o_one} prompts...')
            male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
                                                   do_sample=False, truncation=True)
            st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
                                                      zip(male_generation, st.session_state['male_prompts'])]

            progress_bar.progress(50)

            st.write(f'Generating text for {o_two} prompts...')
            female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
                                                     max_length=50, do_sample=False, truncation=True)
            st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
                                                        zip(female_generation, st.session_state['female_prompts'])]

            progress_bar.progress(100)
            st.write('Text generation completed.')

            st.session_state.pop('rmr', None)
            st.session_state.pop('rfr', None)
            st.subheader('Step 3: Sample Generated Texts')

    if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):

        st.write(f"{o_one} Data Samples:")
        samples_df = pd.DataFrame({
            f'{o_one} Prompt': st.session_state['male_prompts'],
            f'{o_one} Continuation': st.session_state['male_continuations'],
            f'{o_one} Wiki Continuation': st.session_state['male_wiki_continuation'],
        })
        st.write(samples_df)

        st.write(f"{o_two} Data Samples:")
        samples_df = pd.DataFrame({
            f'{o_two} Prompt': st.session_state['female_prompts'],
            f'{o_two} Continuation': st.session_state['female_continuations'],
            f'{o_two} Wiki Continuation': st.session_state['female_wiki_continuation'],
        })
        st.write(samples_df)

        if st.button('Evaluate'):
            st.subheader('Step 4: Regard Results')
            regard = Regard("inner_compare")
            st.write('Computing regard results to compare male and female continuations...')

            with st.spinner('Computing regard results...'):
                regard_male_results = regard.compute(data=st.session_state['male_continuations'],
                                                     references=st.session_state['male_wiki_continuation'])
                st.write(f'**{o_one} Regard Results:**')
                st.json(regard_male_results)
                st.session_state['rmr'] = regard_male_results

                regard_female_results = regard.compute(data=st.session_state['female_continuations'],
                                                       references=st.session_state['female_wiki_continuation'])
                st.write(f'**{o_two} Regard Results:**')
                st.json(regard_female_results)
                st.session_state['rfr'] = regard_female_results

    if st.session_state.get('rmr') and st.session_state.get('rfr'):
        st.subheader('Step 5: Regard Results Plotting')
        if st.button('Plot'):
            categories = ['GPT2', 'Wiki']

            mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
            mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
            mo_gpt = 1 - (mp_gpt + mn_gpt)

            mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
            mn_wiki = mn_gpt - st.session_state['rmr']['ref_diff_mean']['negative']
            mo_wiki = 1 - (mn_wiki + mp_wiki)

            fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive']
            fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative']
            fo_gpt = 1 - (fp_gpt + fn_gpt)

            fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive']
            fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative']
            fo_wiki = 1 - (fn_wiki + fp_wiki)

            positive_m = [mp_gpt, mp_wiki]
            other_m = [mo_gpt, mo_wiki]
            negative_m = [mn_gpt, mn_wiki]

            positive_f = [fp_gpt, fp_wiki]
            other_f = [fo_gpt, fo_wiki]
            negative_f = [fn_gpt, fn_wiki]

            # Plotting
            fig_a, ax_a = plt.subplots()
            ax_a.bar(categories, negative_m, label='Negative', color='blue')
            ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
            ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
                     label='Positive', color='green')

            plt.xlabel('Categories')
            plt.ylabel('Proportion')
            plt.title(f'GPT vs Wiki on {o_one} regard')
            plt.legend()

            st.pyplot(fig_a)

            fig_b, ax_b = plt.subplots()
            ax_b.bar(categories, negative_f, label='Negative', color='blue')
            ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange')
            ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))],
                     label='Positive', color='green')

            plt.xlabel('Categories')
            plt.ylabel('Proportion')
            plt.title(f'GPT vs Wiki on {o_two} regard')
            plt.legend()
            st.pyplot(fig_b)

            m_increase = mp_gpt - mn_gpt
            m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki)
            f_increase = fp_gpt - fn_gpt
            f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki)

            absolute_difference = [m_increase, f_increase]
            relative_difference = [m_relative_increase, f_relative_increase]

            new_categories = [f'{o_one}', f'{o_two}']

            fig_c, ax_c = plt.subplots()
            ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0')

            plt.xlabel('Categories')
            plt.ylabel('Proportion')
            plt.title(f'Difference of positive and negative: {o_one} vs {o_two}')
            plt.legend()
            st.pyplot(fig_c)

            fig_d, ax_d = plt.subplots()
            ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0')

            plt.xlabel('Categories')
            plt.ylabel('Proportion')
            plt.title(f'Difference of positive and negative (relative to Wiki): {o_one} vs {o_two}')
            plt.legend()
            st.pyplot(fig_d)