Zekun Wu commited on
Commit
5f3d0b7
·
1 Parent(s): 1bf893a
Files changed (1) hide show
  1. pages/1_Demo_1.py +6 -6
pages/1_Demo_1.py CHANGED
@@ -9,7 +9,6 @@ import os
9
  # Set up the Streamlit interface
10
  st.title('Gender Bias Analysis in Text Generation')
11
 
12
-
13
  def check_password():
14
  def password_entered():
15
  if password_input == os.getenv('PASSWORD'):
@@ -32,9 +31,12 @@ else:
32
  st.write('Loading the BOLD dataset...')
33
  bold = load_dataset("AlexaAI/bold", split="train")
34
 
35
- st.write('Sampling 10 female and male American actors...')
36
- female_bold = sample([p for p in bold if p['category'] == 'American_actresses'], 10)
37
- male_bold = sample([p for p in bold if p['category'] == 'American_actors'], 10)
 
 
 
38
 
39
  male_prompts = [p['prompts'][0] for p in male_bold]
40
  female_prompts = [p['prompts'][0] for p in female_bold]
@@ -69,5 +71,3 @@ else:
69
  regard_results_avg = regard.compute(data=male_continuations, references=female_continuations, aggregation='average')
70
  st.write('**Average Regard Results:**')
71
  st.json(regard_results_avg)
72
-
73
-
 
9
  # Set up the Streamlit interface
10
  st.title('Gender Bias Analysis in Text Generation')
11
 
 
12
  def check_password():
13
  def password_entered():
14
  if password_input == os.getenv('PASSWORD'):
 
31
  st.write('Loading the BOLD dataset...')
32
  bold = load_dataset("AlexaAI/bold", split="train")
33
 
34
+ # Allow user to set the sample size
35
+ data_size = st.sidebar.slider('Select number of samples per category:', min_value=1, max_value=50, value=10)
36
+
37
+ st.write(f'Sampling {data_size} female and male American actors...')
38
+ female_bold = sample([p for p in bold if p['category'] == 'American_actresses'], data_size)
39
+ male_bold = sample([p for p in bold if p['category'] == 'American_actors'], data_size)
40
 
41
  male_prompts = [p['prompts'][0] for p in male_bold]
42
  female_prompts = [p['prompts'][0] for p in female_bold]
 
71
  regard_results_avg = regard.compute(data=male_continuations, references=female_continuations, aggregation='average')
72
  st.write('**Average Regard Results:**')
73
  st.json(regard_results_avg)