Zekun Wu
commited on
Commit
·
7d9af7f
1
Parent(s):
d8c9fb0
update
Browse files
pages/1_Demo_1.py
CHANGED
|
@@ -7,9 +7,10 @@ from utils.model import gpt2
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
# Set up the Streamlit interface
|
|
|
|
| 10 |
st.title('Gender Bias Analysis in Text Generation')
|
| 11 |
|
| 12 |
-
|
| 13 |
def check_password():
|
| 14 |
def password_entered():
|
| 15 |
if password_input == os.getenv('PASSWORD'):
|
|
@@ -17,99 +18,106 @@ def check_password():
|
|
| 17 |
else:
|
| 18 |
st.error("Incorrect Password, please try again.")
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
if
|
| 24 |
-
st.
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
if not st.session_state.get('password_correct', False):
|
| 28 |
check_password()
|
| 29 |
else:
|
| 30 |
st.sidebar.success("Password Verified. Proceed with the demo.")
|
| 31 |
-
|
| 32 |
-
if 'data_size' not in st.session_state:
|
| 33 |
-
st.session_state['data_size'] = 10
|
| 34 |
-
if 'bold' not in st.session_state:
|
| 35 |
-
st.session_state['bold'] = load_dataset("AlexaAI/bold", split="train")
|
| 36 |
-
if 'female_bold' not in st.session_state:
|
| 37 |
-
st.session_state['female_bold'] = []
|
| 38 |
-
if 'male_bold' not in st.session_state:
|
| 39 |
-
st.session_state['male_bold'] = []
|
| 40 |
|
| 41 |
st.subheader('Step 1: Set Data Size')
|
| 42 |
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50,
|
| 43 |
-
value=st.session_state
|
| 44 |
st.session_state['data_size'] = data_size
|
| 45 |
|
| 46 |
if st.button('Show Data'):
|
| 47 |
-
|
| 48 |
-
[p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size)
|
| 49 |
-
st.session_state['male_bold'] = sample(
|
| 50 |
-
[p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size)
|
| 51 |
-
|
| 52 |
st.write(f'Sampled {data_size} female and male American actors.')
|
| 53 |
-
|
| 54 |
-
st.write('**Male Samples:**', pd.DataFrame(st.session_state['male_bold']))
|
| 55 |
|
| 56 |
-
if st.session_state
|
| 57 |
st.subheader('Step 2: Generate Text')
|
| 58 |
-
|
| 59 |
if st.button('Generate Text'):
|
| 60 |
-
|
| 61 |
-
st.session_state['male_prompts'] = [p['prompts'][0] for p in st.session_state['male_bold']]
|
| 62 |
-
st.session_state['female_prompts'] = [p['prompts'][0] for p in st.session_state['female_bold']]
|
| 63 |
-
|
| 64 |
-
progress_bar = st.progress(0)
|
| 65 |
-
|
| 66 |
-
st.write('Generating text for male prompts...')
|
| 67 |
-
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
|
| 68 |
-
do_sample=False, truncation=True)
|
| 69 |
-
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 70 |
-
zip(male_generation, st.session_state['male_prompts'])]
|
| 71 |
-
|
| 72 |
-
progress_bar.progress(50)
|
| 73 |
-
|
| 74 |
-
st.write('Generating text for female prompts...')
|
| 75 |
-
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
|
| 76 |
-
max_length=50, do_sample=False, truncation=True)
|
| 77 |
-
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 78 |
-
zip(female_generation, st.session_state['female_prompts'])]
|
| 79 |
-
|
| 80 |
-
progress_bar.progress(100)
|
| 81 |
-
st.write('Text generation completed.')
|
| 82 |
|
| 83 |
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
|
| 84 |
-
st.subheader('Step 3:
|
| 85 |
-
|
| 86 |
-
st.write("Male Data Samples:")
|
| 87 |
-
samples_df = pd.DataFrame({
|
| 88 |
-
'Male Prompt': st.session_state['male_prompts'],
|
| 89 |
-
'Male Continuation': st.session_state['male_continuations'],
|
| 90 |
-
})
|
| 91 |
-
st.write(samples_df)
|
| 92 |
-
|
| 93 |
-
st.write("Female Data Samples:")
|
| 94 |
-
samples_df = pd.DataFrame({
|
| 95 |
-
'Female Prompt': st.session_state['female_prompts'],
|
| 96 |
-
'Female Continuation': st.session_state['female_continuations']
|
| 97 |
-
})
|
| 98 |
-
st.write(samples_df)
|
| 99 |
-
|
| 100 |
if st.button('Evaluate'):
|
| 101 |
-
|
| 102 |
-
regard = Regard("compare")
|
| 103 |
-
st.write('Computing regard results to compare male and female continuations...')
|
| 104 |
-
|
| 105 |
-
with st.spinner('Computing regard results...'):
|
| 106 |
-
regard_results = regard.compute(data=st.session_state['male_continuations'],
|
| 107 |
-
references=st.session_state['female_continuations'])
|
| 108 |
-
st.write('**Raw Regard Results:**')
|
| 109 |
-
st.json(regard_results)
|
| 110 |
-
|
| 111 |
-
regard_results_avg = regard.compute(data=st.session_state['male_continuations'],
|
| 112 |
-
references=st.session_state['female_continuations'],
|
| 113 |
-
aggregation='average')
|
| 114 |
-
st.write('**Average Regard Results:**')
|
| 115 |
-
st.json(regard_results_avg)
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
# Set up the Streamlit interface
|
| 10 |
+
st.set_page_config(page_title="Gender Bias Analysis", page_icon="🔍", layout="wide")
|
| 11 |
st.title('Gender Bias Analysis in Text Generation')
|
| 12 |
|
| 13 |
+
# Password protection function
|
| 14 |
def check_password():
|
| 15 |
def password_entered():
|
| 16 |
if password_input == os.getenv('PASSWORD'):
|
|
|
|
| 18 |
else:
|
| 19 |
st.error("Incorrect Password, please try again.")
|
| 20 |
|
| 21 |
+
if 'password_correct' not in st.session_state:
|
| 22 |
+
st.session_state['password_correct'] = False
|
| 23 |
|
| 24 |
+
if not st.session_state['password_correct']:
|
| 25 |
+
password_input = st.text_input("Enter Password:", type="password")
|
| 26 |
+
st.button("Submit", on_click=password_entered)
|
| 27 |
|
| 28 |
+
# Data loading function
|
| 29 |
+
def load_data():
|
| 30 |
+
if 'bold' not in st.session_state:
|
| 31 |
+
st.session_state['bold'] = load_dataset("AlexaAI/bold", split="train")
|
| 32 |
|
| 33 |
+
# Sampling function
|
| 34 |
+
def sample_data(data_size):
|
| 35 |
+
st.session_state['female_bold'] = sample(
|
| 36 |
+
[p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size)
|
| 37 |
+
st.session_state['male_bold'] = sample(
|
| 38 |
+
[p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size)
|
| 39 |
+
|
| 40 |
+
# Text generation function
|
| 41 |
+
def generate_text():
|
| 42 |
+
GPT2 = gpt2()
|
| 43 |
+
st.session_state['male_prompts'] = [p['prompts'][0] for p in st.session_state['male_bold']]
|
| 44 |
+
st.session_state['female_prompts'] = [p['prompts'][0] for p in st.session_state['female_bold']]
|
| 45 |
+
|
| 46 |
+
progress_bar = st.progress(0)
|
| 47 |
+
st.write('Generating text for male prompts...')
|
| 48 |
+
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
|
| 49 |
+
do_sample=False, truncation=True)
|
| 50 |
+
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 51 |
+
zip(male_generation, st.session_state['male_prompts'])]
|
| 52 |
+
|
| 53 |
+
progress_bar.progress(50)
|
| 54 |
+
|
| 55 |
+
st.write('Generating text for female prompts...')
|
| 56 |
+
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
|
| 57 |
+
max_length=50, do_sample=False, truncation=True)
|
| 58 |
+
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 59 |
+
zip(female_generation, st.session_state['female_prompts'])]
|
| 60 |
+
|
| 61 |
+
progress_bar.progress(100)
|
| 62 |
+
st.write('Text generation completed.')
|
| 63 |
+
|
| 64 |
+
# Display data samples function
|
| 65 |
+
def display_samples():
|
| 66 |
+
st.write("### Male Data Samples")
|
| 67 |
+
samples_df = pd.DataFrame({
|
| 68 |
+
'Male Prompt': st.session_state['male_prompts'],
|
| 69 |
+
'Male Continuation': st.session_state['male_continuations'],
|
| 70 |
+
})
|
| 71 |
+
st.dataframe(samples_df)
|
| 72 |
+
|
| 73 |
+
st.write("### Female Data Samples")
|
| 74 |
+
samples_df = pd.DataFrame({
|
| 75 |
+
'Female Prompt': st.session_state['female_prompts'],
|
| 76 |
+
'Female Continuation': st.session_state['female_continuations']
|
| 77 |
+
})
|
| 78 |
+
st.dataframe(samples_df)
|
| 79 |
+
|
| 80 |
+
# Evaluate regard function
|
| 81 |
+
def evaluate_regard():
|
| 82 |
+
regard = Regard("compare")
|
| 83 |
+
st.write('Computing regard results to compare male and female continuations...')
|
| 84 |
+
|
| 85 |
+
with st.spinner('Computing regard results...'):
|
| 86 |
+
regard_results = regard.compute(data=st.session_state['male_continuations'],
|
| 87 |
+
references=st.session_state['female_continuations'])
|
| 88 |
+
st.write('**Raw Regard Results:**')
|
| 89 |
+
st.json(regard_results)
|
| 90 |
+
|
| 91 |
+
regard_results_avg = regard.compute(data=st.session_state['male_continuations'],
|
| 92 |
+
references=st.session_state['female_continuations'],
|
| 93 |
+
aggregation='average')
|
| 94 |
+
st.write('**Average Regard Results:**')
|
| 95 |
+
st.json(regard_results_avg)
|
| 96 |
+
|
| 97 |
+
# Main app logic
|
| 98 |
if not st.session_state.get('password_correct', False):
|
| 99 |
check_password()
|
| 100 |
else:
|
| 101 |
st.sidebar.success("Password Verified. Proceed with the demo.")
|
| 102 |
+
load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
st.subheader('Step 1: Set Data Size')
|
| 105 |
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50,
|
| 106 |
+
value=st.session_state.get('data_size', 10))
|
| 107 |
st.session_state['data_size'] = data_size
|
| 108 |
|
| 109 |
if st.button('Show Data'):
|
| 110 |
+
sample_data(data_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
st.write(f'Sampled {data_size} female and male American actors.')
|
| 112 |
+
display_samples()
|
|
|
|
| 113 |
|
| 114 |
+
if st.session_state.get('female_bold') and st.session_state.get('male_bold'):
|
| 115 |
st.subheader('Step 2: Generate Text')
|
|
|
|
| 116 |
if st.button('Generate Text'):
|
| 117 |
+
generate_text()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
|
| 120 |
+
st.subheader('Step 3: Evaluate')
|
| 121 |
+
display_samples()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if st.button('Evaluate'):
|
| 123 |
+
evaluate_regard()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (183 Bytes). View file
|
|
|
utils/__pycache__/metric.cpython-310.pyc
ADDED
|
Binary file (2.55 kB). View file
|
|
|
utils/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (785 Bytes). View file
|
|
|