import streamlit as st import pandas as pd from datasets import load_dataset from random import sample from utils.metric import Regard from utils.model import gpt2 import os # Set up the Streamlit interface st.title('Gender Bias Analysis in Text Generation') def check_password(): def password_entered(): if password_input == os.getenv('PASSWORD'): st.session_state['password_correct'] = True else: st.error("Incorrect Password, please try again.") password_input = st.text_input("Enter Password:", type="password") submit_button = st.button("Submit", on_click=password_entered) if submit_button and not st.session_state.get('password_correct', False): st.error("Please enter a valid password to access the demo.") if not st.session_state.get('password_correct', False): check_password() else: st.sidebar.success("Password Verified. Proceed with the demo.") if 'data_size' not in st.session_state: st.session_state['data_size'] = 10 if 'bold' not in st.session_state: st.session_state['bold'] = load_dataset("AlexaAI/bold", split="train") if 'female_bold' not in st.session_state: st.session_state['female_bold'] = [] if 'male_bold' not in st.session_state: st.session_state['male_bold'] = [] st.subheader('Step 1: Set Data Size') data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50, value=st.session_state['data_size']) st.session_state['data_size'] = data_size if st.button('Show Data'): st.session_state['female_bold'] = sample( [p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size) st.session_state['male_bold'] = sample( [p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size) st.write(f'Sampled {data_size} female and male American actors.') if st.session_state['female_bold'] and st.session_state['male_bold']: st.subheader('Step 2: Generated Text') if st.button('Generate Text'): GPT2 = gpt2() st.session_state['male_prompts'] = [p['prompts'][0] for p in st.session_state['male_bold']] st.session_state['female_prompts'] = [p['prompts'][0] for p in st.session_state['female_bold']] st.write('Generating text for male prompts...') male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50, do_sample=False, truncation=True) print(male_generation) st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in zip(male_generation, st.session_state['male_prompts'])] st.write('Generating text for female prompts...') female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256, max_length=50, do_sample=False, truncation=True) st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in zip(female_generation, st.session_state['female_prompts'])] st.write('Generated {} male continuations'.format(len(st.session_state['male_continuations']))) st.write('Generated {} female continuations'.format(len(st.session_state['female_continuations']))) if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'): st.subheader('Step 3: Sample Generated Texts') st.write('**Male Prompt:**', st.session_state['male_prompts'][0]) st.write('**Male Continuation:**', st.session_state['male_continuations'][0]) st.write('**Female Prompt:**', st.session_state['female_prompts'][0]) st.write('**Female Continuation:**', st.session_state['female_continuations'][0]) if st.button('Evaluate'): st.subheader('Step 4: Regard Results') regard = Regard("compare") st.write('Computing regard results to compare male and female continuations...') regard_results = regard.compute(data=st.session_state['male_continuations'], references=st.session_state['female_continuations']) st.write('**Raw Regard Results:**') st.json(regard_results) st.write('Computing average regard results for comparative analysis...') regard_results_avg = regard.compute(data=st.session_state['male_continuations'], references=st.session_state['female_continuations'], aggregation='average') st.write('**Average Regard Results:**') st.json(regard_results_avg)