Zekun Wu commited on
Commit
ba3438a
·
1 Parent(s): 7b25931
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -33,7 +33,7 @@ def create_summary(row,label):
33
  f"Please act as a Human Resource Professional. This score will determine whether they will be hired or not."
34
  )
35
 
36
- def invoke_retry(prompt, **parameters):
37
  attempts = 0
38
  delay = 2 # Initial delay in seconds
39
  max_attempts = 20 # Maximum number of retry attempts
@@ -51,7 +51,7 @@ def invoke_retry(prompt, **parameters):
51
 
52
  raise Exception("Failed to complete the API call after maximum retry attempts.")
53
 
54
- def process_scores(df, num_run,parameters,privilege_label,protect_label):
55
  """ Process entries and compute scores concurrently, with progress updates. """
56
  scores = {key: [[] for _ in range(len(df))] for key in ['Privilege', 'Protect', 'Neutral']}
57
 
@@ -59,7 +59,7 @@ def process_scores(df, num_run,parameters,privilege_label,protect_label):
59
  for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing entries", unit="entry"):
60
  for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, None]):
61
  prompt_temp = create_summary(row,label)
62
- result = invoke_retry(prompt_temp, **parameters)
63
  scores[key][index].append(result)
64
 
65
  # Assign score lists and calculate average scores
 
33
  f"Please act as a Human Resource Professional. This score will determine whether they will be hired or not."
34
  )
35
 
36
+ def invoke_retry(prompt,agent,parameters):
37
  attempts = 0
38
  delay = 2 # Initial delay in seconds
39
  max_attempts = 20 # Maximum number of retry attempts
 
51
 
52
  raise Exception("Failed to complete the API call after maximum retry attempts.")
53
 
54
+ def process_scores(df, num_run,parameters,privilege_label,protect_label,agent):
55
  """ Process entries and compute scores concurrently, with progress updates. """
56
  scores = {key: [[] for _ in range(len(df))] for key in ['Privilege', 'Protect', 'Neutral']}
57
 
 
59
  for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing entries", unit="entry"):
60
  for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, None]):
61
  prompt_temp = create_summary(row,label)
62
+ result = invoke_retry(prompt_temp,agent,parameters)
63
  scores[key][index].append(result)
64
 
65
  # Assign score lists and calculate average scores