Spaces:
Sleeping
Sleeping
File size: 5,978 Bytes
693b654 6adf9db 4efe666 6adf9db 4efe666 6adf9db 6d335d2 6adf9db 234c1c2 6adf9db 693b654 4efe666 6adf9db 693b654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from io import BytesIO
import pandas as pd
import requests
import streamlit as st
import json
from tqdm import tqdm
from openai import AzureOpenAI
import json_repair
import backoff
import os
# API setting constants
API_MAX_RETRY = 5
API_RETRY_SLEEP = 10
class GPTAgent:
def __init__(self):
self.client = AzureOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
api_version="2024-02-15-preview",
azure_endpoint=os.getenv("END_POINTS")
)
self.deployment_name = ("gpt-4o-mini")
@backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_tries=8)
def invoke(self, text):
prompt = """You are a creative recruitment specialist tasked with generating witty and engaging recruitment potshots. Your goal is to craft short, attention-grabbing statements designed to attract potential candidates for job openings. These potshots should be tailored to the role, audience, and company values provided, and should make the job opportunity stand out in a competitive market."""
temperature = 0.9
max_tokens = 3500
response = self.client.chat.completions.create(
model=self.deployment_name,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": text},
],
temperature=temperature,
max_tokens=max_tokens,
)
output = response.choices[0].message.content
return output
def generate_potshot_prompt(batch, role, tone, audience, values):
prompt = f"""You are a recruitment specialist tasked with generating witty and engaging recruitment potshots.
Your goal is to craft short, attention-grabbing statements designed to attract potential job candidates for the role of {role}. These statements should appeal to {audience} and reflect the company's values: {values}.
Please adopt a tone that is {tone}. Your objective is to make the job opportunity stand out and be highly appealing to the intended audience.
Provide this list of {batch} recruitment potshots in JSON format, for example:
{{"potshots": ["potshot 1", "potshot 2", ..., "potshot n"]}}
Remember to focus on being engaging, playful, and sharp in these recruitment potshots."""
return prompt.strip()
# Function to get recruitment potshots with customizations
def get_potshots(n_repeat=1, batch=20, role="Developer", tone="humorous", audience="tech-savvy candidates",
values="innovation, teamwork"):
total_potshots = []
desired_count = n_repeat * batch
with tqdm(total=desired_count, desc="Generating potshots") as pbar:
while len(total_potshots) < desired_count:
needed = min(batch, desired_count - len(total_potshots))
prompt = generate_potshot_prompt(batch=needed, role=role, tone=tone, audience=audience, values=values)
gpt_agent = GPTAgent()
response = gpt_agent.invoke(prompt)
try:
batch_potshots = json.loads(response).get("potshots", [])
total_potshots.extend(batch_potshots)
pbar.update(len(batch_potshots))
except json.JSONDecodeError:
# Attempt to repair the JSON if decoding fails
try:
repaired_json = json_repair.repair_json(response, skip_json_loads=True, return_objects=False)
batch_potshots = json.loads(repaired_json).get("potshots", [])
total_potshots.extend(batch_potshots)
pbar.update(len(batch_potshots))
except json.JSONDecodeError:
st.error("Failed to decode JSON response even after repair attempt. Skipping this batch.")
if len(total_potshots) > desired_count:
total_potshots = total_potshots[:desired_count]
df = pd.DataFrame([{"potshot": potshot, "role": role, "tone": tone, "audience": audience, "values": values} for potshot in total_potshots])
return df
# Streamlit App Interface
st.title("Customized Recruiting Potshots Generator")
# Input Fields for Customization
# Input Fields for Full Customization with Default Values
role = st.text_input("Job Role", value="Developer", help="Enter the job role you are recruiting for. Default is 'Developer'.")
tone = st.text_input("Tone of the Potshots", value="humorous", help="Enter any tone for the potshots (e.g., humorous, serious, edgy). Default is 'humorous'.")
audience = st.text_input("Target Audience", value="tech-savvy candidates", help="Define the target audience for the potshots. Default is 'tech-savvy candidates'.")
values = st.text_area("Company Values", value="innovation, teamwork, transparency", help="Enter your company values that should be reflected in the potshots. Default is 'innovation, teamwork, transparency'.")
batch_size = st.number_input("Batch Size", min_value=1, max_value=100, value=10)
repeat_times = st.number_input("Number of Batches", min_value=1, max_value=10, value=1)
def to_excel(df):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='Potshots')
writer.save()
processed_data = output.getvalue()
return processed_data
if st.button("Generate Potshots"):
with st.spinner("Generating customized potshots..."):
df = get_potshots(n_repeat=repeat_times, batch=batch_size, role=role, tone=tone, audience=audience,
values=values)
# Display the generated potshots as a table
st.write("### Generated Potshots")
st.dataframe(df)
# Provide a download button for the Excel file
st.write("### Download Potshots")
excel_data = to_excel(df)
st.download_button(label="Download Potshots as Excel", data=excel_data, file_name="potshots.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|