File size: 5,586 Bytes
7a837d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os 
import shutil
import tempfile
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_ollama import OllamaEmbeddings
from langchain_community.vectorstores import Chroma 
from langchain.chains import RetrievalQA
from langchain_community.llms import Ollama
from book_title_extractor import BookTitleExtractor
from duplicate_detector import DuplicateDetector
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.chat_models import ChatOllama
class StreamingHanlder(BaseCallbackHandler):
    def __init__(self):
        self.buffer =[]
        self.token_callback = None
    def on_llm_new_token(self, token:str, **kwargs):
        self.buffer.append(token)
        if self.token_callback:
            self.token_callback(token)


class RagEngine:
    def __init__(self, embed_model= "nomic-embed-text",llm_model="qwen:1.8b", temp_dir ="chroma_temp"):
        self.embed_model = embed_model
        self.llm_model = llm_model
        self.embedding = OllamaEmbeddings(model=self.embed_model)
        self.vectorstore = None
        self.qa_chain = None
        self.handler = StreamingHanlder()
        self.llm = ChatOllama (model=self.llm_model, streaming= True, callbacks=[self.handler] )
        
        self.temp_dir = temp_dir
       
        os.makedirs(self.temp_dir, exist_ok=True)
        self.title_extractor = BookTitleExtractor(llm=self.llm)
        self.duplicate_detector = DuplicateDetector()
        if os.path.exists(os.path.join(self.temp_dir, "chroma.sqlite3")):
            print("πŸ” Loading existing Chroma vectorstore...")
            self.vectorstore = Chroma(
                persist_directory=self.temp_dir,
                embedding_function=self.embedding
            )
            self.qa_chain = RetrievalQA.from_chain_type(
                llm=self.llm,
                retriever=self.vectorstore.as_retriever(),
                return_source_documents=True
            )
            print("Vectorstore and QA chain restored.")
    
    def clear_temp(self):
        shutil.rmtree(self.temp_dir,ignore_errors=True)
        os.makedirs(self.temp_dir, exist_ok=True)
   
    def index_pdf(self, pdf_path):
        if self.duplicate_detector.is_duplicate(pdf_path):
            raise ValueError(f"duplicate book detected, skipping index of: {pdf_path}")
            return    
        self.duplicate_detector.store_fingerprints(pdf_path)
        self.clear_temp()
        filename = os.path.basename(pdf_path)
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        title = self.title_extractor.extract_book_title_from_documents(documents,max_docs=10)
        
        for doc in documents:
            doc.metadata["source"] = title
        documents = [doc for doc in documents if doc.page_content.strip()]
        if not documents:
            raise ValueError("No Reasonable text in uploaded pdf")
            
        
        splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap = 500 )
        chunks = splitter.split_documents(documents)
        if self.vectorstore is None:
            self.vectorstore = Chroma.from_documents(
                documents=chunks,
                embedding=self.embedding,
                persist_directory=self.temp_dir
            )
            self.vectorstore.persist()
          
        else:
            self.vectorstore.add_documents(chunks)
      
      
        self.qa_chain = RetrievalQA.from_chain_type(
            llm = self.llm,
            retriever = self.vectorstore.as_retriever(),
            return_source_documents = True
        )
        
    def ask_question(self, question):
        print (question)
        if not self.qa_chain :
            return "please upload and index pdf document first"
        result = self.qa_chain({"query":question})
        answer = result["result"]
        sources =[]
        for doc in result["source_documents"]:
             source = doc.metadata.get("source", "Unknown")
             sources.append(source)
        print (answer)
        return {
            "answer": answer,
            "sources": list(set(sources))  # Remove duplicates
        }
    
    def ask_question_stream(self, question: str):
        if not self.qa_chain:
            yield "❗ Please upload and index a PDF document first."
            return
        from queue import Queue, Empty
        import threading    
        q = Queue()
        def token_callback(token):
          q.put(token) 
        self.handler.buffer = []
        self.handler.token_callback = token_callback
        def run():
            result = self.qa_chain.invoke({"query": question})
            print (result)
            self._latest_result = result
            q.put(None) 
        threading.Thread(target=run).start()

        print("Threading started", flush=True)
        while True:
         try:
            token = q.get(timeout=30)
            if token is None:
                print("Stream finished", flush=True)
                break
            yield token
         except Empty:
            print("Timed out waiting for token", flush=True)
            break
        sources = []
        for doc in self._latest_result.get("source_documents",[] ):
         
            source = doc.metadata.get("source", "Unknown")
            sources.append(source)

        if sources:
            yield "\n\nπŸ“š **Sources:**\n"
            for i, src in enumerate(set(sources)):
                yield f"[{i+1}] {src}\n"