File size: 7,876 Bytes
7a837d4
 
 
e0313cc
7a837d4
 
e0313cc
 
7a837d4
e0313cc
 
 
7a837d4
 
e0313cc
7a837d4
 
 
 
 
 
 
 
 
 
e0313cc
 
 
 
 
 
 
 
7a837d4
 
 
e0313cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a837d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0313cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a837d4
e0313cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a837d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os 
import shutil
import tempfile
from threading import Thread
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM, pipeline

from book_title_extractor import BookTitleExtractor
from duplicate_detector import DuplicateDetector
class StreamingHanlder():
    def __init__(self):
        self.buffer =[]
        self.token_callback = None
    def on_llm_new_token(self, token:str, **kwargs):
        self.buffer.append(token)
        if self.token_callback:
            self.token_callback(token)


class RagEngine:
    def _load_vectorstore(self):
        if os.path.exists(os.path.join(self.persist_dir, "chroma.sqlite3")):
           self.vectorstore = Chroma(
                persist_directory=self.persist_dir,
                embedding_function=self.embedding
            )
           self.retriever = self.vectorstore.as_retriever()
    def __init__(self, persist_dir="chroma_store",embed_model= "nomic-embed-text",llm_model="qwen:1.8b", temp_dir ="chroma_temp"):
        self.temp_dir = temp_dir
        os.makedirs(self.temp_dir, exist_ok=True)
        self.duplicate_detector = DuplicateDetector()
        self.title_extractor = BookTitleExtractor()    
        self.embedding = HuggingFaceEmbeddings(
              model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
        
        self.vectorstore =None
        self.retriever = None
        self.persist_dir = "chroma_temp"
        self._load_vectorstore()
        self.model_id = "Qwen/Qwen-1_8B-Chat"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code = True)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id,
                                                        trust_remote_code = True,
                                                        device_map ="auto",
                                                        torch_dtype = "auto")
        self.model.eval()    
        
    def clear_temp(self):
        shutil.rmtree(self.temp_dir,ignore_errors=True)
        os.makedirs(self.temp_dir, exist_ok=True)
   
    def index_pdf(self, pdf_path):
        if self.duplicate_detector.is_duplicate(pdf_path):
            raise ValueError(f"duplicate book detected, skipping index of: {pdf_path}")
            return    
        self.duplicate_detector.store_fingerprints(pdf_path)
        self.clear_temp()
        filename = os.path.basename(pdf_path)
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        title = self.title_extractor.extract_book_title_from_documents(documents,max_docs=10)
        
        for doc in documents:
            doc.metadata["source"] = title
        documents = [doc for doc in documents if doc.page_content.strip()]
        if not documents:
            raise ValueError("No Reasonable text in uploaded pdf")
            
        
        splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap = 500 )
        chunks = splitter.split_documents(documents)
        if self.vectorstore is None:
            self.vectorstore = Chroma.from_documents(
                documents=chunks,
                embedding=self.embedding,
                persist_directory=self.temp_dir
            )
            self.vectorstore.persist()
          
        else:
            self.vectorstore.add_documents(chunks)
      
        self.vectorstore.persist()
        self.retriever = self.vectorstore.as_retriever()
    
    def stream_answer(self, question):
        if not self.retriever: 
            yield "data: ❗ Please upload and index a PDF first.\n\n"
            return
        docs = self.retriever.get_relevant_documents(question)
        if not docs:
            yield "data: ❗ No relevant documents found.\n\n"
            return
        sources = []
        for doc in docs:
            title = doc.metadata.get("source", "Unknown Title")
            page = doc.metadata.get("page", "Unknown Page")
            sources.append(f"{title} - Page {page}")
        context = "\n\n".join([doc.page_content for doc in docs[:3]])
       
        system_prompt = "You are a helpful assistant that only replies in English."
        user_prompt = f"Context:\n{context}\n\nQuestion: {question}"
       
        prompt = (
            "<|im_start|>system\nYou are a helpful assistant that only replies in English.<|im_end|>\n"
            f"<|im_start|>user\nContext:\n{context}\n\nQuestion: {question}<|im_end|>\n"
            "<|im_start|>assistant\n"
        )
        print (prompt)
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        print("πŸ”’ Prompt token length:", inputs['input_ids'].shape[-1])     
        streamer = TextIteratorStreamer(
        tokenizer=self.tokenizer,
        skip_prompt=True,
        skip_special_tokens=True
        )
        generation_args = {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "max_new_tokens": 512,
        "streamer": streamer,
        "do_sample": False,
        "temperature": 0.0,
        "top_p": 0.95,
        }
        thread = Thread(target=self.model.generate, kwargs=generation_args)
        thread.start()
        collected_tokens = []
        for token in streamer:
            if token.strip():  # Filter out whitespace
                collected_tokens.append(token)
                
                yield f"{token} "
        if sources:
           sources_text = "\n\nπŸ“š **Sources:**\n" + "\n".join(set(sources))
        for line in sources_text.splitlines():
            if  line.strip():
                yield f"{line} \n"

        yield "\n\n"
    def ask_question(self, question):
        print (question)
        if not self.qa_chain :
            return "please upload and index pdf document first"
        result = self.qa_chain({"query":question})
        answer = result["result"]
        sources =[]
        for doc in result["source_documents"]:
             source = doc.metadata.get("source", "Unknown")
             sources.append(source)
        print (answer)
        return {
            "answer": answer,
            "sources": list(set(sources))  # Remove duplicates
        }
    
    def ask_question_stream(self, question: str):
        if not self.qa_chain:
            yield "❗ Please upload and index a PDF document first."
            return
        from queue import Queue, Empty
        import threading    
        q = Queue()
        def token_callback(token):
          q.put(token) 
        self.handler.buffer = []
        self.handler.token_callback = token_callback
        def run():
            result = self.qa_chain.invoke({"query": question})
            print (result)
            self._latest_result = result
            q.put(None) 
        threading.Thread(target=run).start()

        print("Threading started", flush=True)
        while True:
         try:
            token = q.get(timeout=30)
            if token is None:
                print("Stream finished", flush=True)
                break
            yield token
         except Empty:
            print("Timed out waiting for token", flush=True)
            break
        sources = []
        for doc in self._latest_result.get("source_documents",[] ):
         
            source = doc.metadata.get("source", "Unknown")
            sources.append(source)

        if sources:
            yield "\n\nπŸ“š **Sources:**\n"
            for i, src in enumerate(set(sources)):
                yield f"[{i+1}] {src}\n"