Spaces:
Sleeping
Sleeping
File size: 7,876 Bytes
7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 e0313cc 7a837d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import shutil
import tempfile
from threading import Thread
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM, pipeline
from book_title_extractor import BookTitleExtractor
from duplicate_detector import DuplicateDetector
class StreamingHanlder():
def __init__(self):
self.buffer =[]
self.token_callback = None
def on_llm_new_token(self, token:str, **kwargs):
self.buffer.append(token)
if self.token_callback:
self.token_callback(token)
class RagEngine:
def _load_vectorstore(self):
if os.path.exists(os.path.join(self.persist_dir, "chroma.sqlite3")):
self.vectorstore = Chroma(
persist_directory=self.persist_dir,
embedding_function=self.embedding
)
self.retriever = self.vectorstore.as_retriever()
def __init__(self, persist_dir="chroma_store",embed_model= "nomic-embed-text",llm_model="qwen:1.8b", temp_dir ="chroma_temp"):
self.temp_dir = temp_dir
os.makedirs(self.temp_dir, exist_ok=True)
self.duplicate_detector = DuplicateDetector()
self.title_extractor = BookTitleExtractor()
self.embedding = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
self.vectorstore =None
self.retriever = None
self.persist_dir = "chroma_temp"
self._load_vectorstore()
self.model_id = "Qwen/Qwen-1_8B-Chat"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code = True)
self.model = AutoModelForCausalLM.from_pretrained(self.model_id,
trust_remote_code = True,
device_map ="auto",
torch_dtype = "auto")
self.model.eval()
def clear_temp(self):
shutil.rmtree(self.temp_dir,ignore_errors=True)
os.makedirs(self.temp_dir, exist_ok=True)
def index_pdf(self, pdf_path):
if self.duplicate_detector.is_duplicate(pdf_path):
raise ValueError(f"duplicate book detected, skipping index of: {pdf_path}")
return
self.duplicate_detector.store_fingerprints(pdf_path)
self.clear_temp()
filename = os.path.basename(pdf_path)
loader = PyPDFLoader(pdf_path)
documents = loader.load()
title = self.title_extractor.extract_book_title_from_documents(documents,max_docs=10)
for doc in documents:
doc.metadata["source"] = title
documents = [doc for doc in documents if doc.page_content.strip()]
if not documents:
raise ValueError("No Reasonable text in uploaded pdf")
splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap = 500 )
chunks = splitter.split_documents(documents)
if self.vectorstore is None:
self.vectorstore = Chroma.from_documents(
documents=chunks,
embedding=self.embedding,
persist_directory=self.temp_dir
)
self.vectorstore.persist()
else:
self.vectorstore.add_documents(chunks)
self.vectorstore.persist()
self.retriever = self.vectorstore.as_retriever()
def stream_answer(self, question):
if not self.retriever:
yield "data: β Please upload and index a PDF first.\n\n"
return
docs = self.retriever.get_relevant_documents(question)
if not docs:
yield "data: β No relevant documents found.\n\n"
return
sources = []
for doc in docs:
title = doc.metadata.get("source", "Unknown Title")
page = doc.metadata.get("page", "Unknown Page")
sources.append(f"{title} - Page {page}")
context = "\n\n".join([doc.page_content for doc in docs[:3]])
system_prompt = "You are a helpful assistant that only replies in English."
user_prompt = f"Context:\n{context}\n\nQuestion: {question}"
prompt = (
"<|im_start|>system\nYou are a helpful assistant that only replies in English.<|im_end|>\n"
f"<|im_start|>user\nContext:\n{context}\n\nQuestion: {question}<|im_end|>\n"
"<|im_start|>assistant\n"
)
print (prompt)
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
print("π’ Prompt token length:", inputs['input_ids'].shape[-1])
streamer = TextIteratorStreamer(
tokenizer=self.tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
generation_args = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 512,
"streamer": streamer,
"do_sample": False,
"temperature": 0.0,
"top_p": 0.95,
}
thread = Thread(target=self.model.generate, kwargs=generation_args)
thread.start()
collected_tokens = []
for token in streamer:
if token.strip(): # Filter out whitespace
collected_tokens.append(token)
yield f"{token} "
if sources:
sources_text = "\n\nπ **Sources:**\n" + "\n".join(set(sources))
for line in sources_text.splitlines():
if line.strip():
yield f"{line} \n"
yield "\n\n"
def ask_question(self, question):
print (question)
if not self.qa_chain :
return "please upload and index pdf document first"
result = self.qa_chain({"query":question})
answer = result["result"]
sources =[]
for doc in result["source_documents"]:
source = doc.metadata.get("source", "Unknown")
sources.append(source)
print (answer)
return {
"answer": answer,
"sources": list(set(sources)) # Remove duplicates
}
def ask_question_stream(self, question: str):
if not self.qa_chain:
yield "β Please upload and index a PDF document first."
return
from queue import Queue, Empty
import threading
q = Queue()
def token_callback(token):
q.put(token)
self.handler.buffer = []
self.handler.token_callback = token_callback
def run():
result = self.qa_chain.invoke({"query": question})
print (result)
self._latest_result = result
q.put(None)
threading.Thread(target=run).start()
print("Threading started", flush=True)
while True:
try:
token = q.get(timeout=30)
if token is None:
print("Stream finished", flush=True)
break
yield token
except Empty:
print("Timed out waiting for token", flush=True)
break
sources = []
for doc in self._latest_result.get("source_documents",[] ):
source = doc.metadata.get("source", "Unknown")
sources.append(source)
if sources:
yield "\n\nπ **Sources:**\n"
for i, src in enumerate(set(sources)):
yield f"[{i+1}] {src}\n" |