Spaces:
Runtime error
Runtime error
Commit
·
cf69cf0
1
Parent(s):
c1fe8ee
Upload 2 files
Browse files- modeling_rwkv.py +1236 -0
- modeling_vision.py +48 -0
modeling_rwkv.py
ADDED
|
@@ -0,0 +1,1236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
########################################################################################################
|
| 2 |
+
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
| 3 |
+
########################################################################################################
|
| 4 |
+
|
| 5 |
+
from typing import Optional
|
| 6 |
+
import types, gc, os, time, re
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
torch.backends.cudnn.benchmark = True
|
| 11 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 12 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 13 |
+
current_path = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
+
|
| 15 |
+
########################################################################################################
|
| 16 |
+
|
| 17 |
+
if os.environ.get('RWKV_JIT_ON') != '0':
|
| 18 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
| 19 |
+
MyModule = torch.jit.ScriptModule
|
| 20 |
+
MyFunction = torch.jit.script_method
|
| 21 |
+
MyStatic = torch.jit.script
|
| 22 |
+
else:
|
| 23 |
+
MyModule = torch.nn.Module
|
| 24 |
+
def __nop(ob):
|
| 25 |
+
return ob
|
| 26 |
+
MyFunction = __nop
|
| 27 |
+
MyStatic = __nop
|
| 28 |
+
|
| 29 |
+
if os.environ.get('RWKV_CUDA_ON') == '1':
|
| 30 |
+
from torch.utils.cpp_extension import load
|
| 31 |
+
try:
|
| 32 |
+
load(
|
| 33 |
+
name=f"wkv_cuda",
|
| 34 |
+
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu", f"{current_path}/cuda/gemm_fp16_cublas.cpp"],
|
| 35 |
+
verbose=True,
|
| 36 |
+
extra_ldflags=["cublas.lib" if os.name == "nt" else ""],
|
| 37 |
+
extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
|
| 38 |
+
is_python_module=False)
|
| 39 |
+
DISABLE_CUBLAS_GEMM = False
|
| 40 |
+
except:
|
| 41 |
+
print("Failed to build cuBLAS matmul, falling back to torch.matmul. Small model with fp16 will overflow.")
|
| 42 |
+
load(
|
| 43 |
+
name=f"wkv_cuda",
|
| 44 |
+
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
|
| 45 |
+
verbose=True,
|
| 46 |
+
extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
|
| 47 |
+
extra_cflags=["-DDISABLE_CUBLAS_GEMM"],
|
| 48 |
+
is_python_module=False)
|
| 49 |
+
DISABLE_CUBLAS_GEMM = True
|
| 50 |
+
|
| 51 |
+
@MyStatic
|
| 52 |
+
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
|
| 53 |
+
assert 1 * C % min(C, 32) == 0
|
| 54 |
+
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
|
| 55 |
+
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
|
| 56 |
+
w = w.contiguous()
|
| 57 |
+
u = u.contiguous()
|
| 58 |
+
k = k.contiguous()
|
| 59 |
+
v = v.contiguous()
|
| 60 |
+
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
|
| 61 |
+
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
|
| 62 |
+
return y, aa, bb, pp
|
| 63 |
+
@MyStatic
|
| 64 |
+
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
|
| 65 |
+
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
| 66 |
+
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
| 67 |
+
assert w.dtype == torch.uint8
|
| 68 |
+
assert x.shape == (B, N)
|
| 69 |
+
assert w.shape == (N, M)
|
| 70 |
+
assert rx.shape == mx.shape == (M,)
|
| 71 |
+
assert ry.shape == my.shape == (N, 1)
|
| 72 |
+
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
|
| 73 |
+
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
|
| 74 |
+
return y
|
| 75 |
+
@MyStatic
|
| 76 |
+
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
|
| 77 |
+
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
| 78 |
+
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
| 79 |
+
assert w.dtype == torch.uint8
|
| 80 |
+
assert x.shape == (N,)
|
| 81 |
+
assert w.shape == (N, M)
|
| 82 |
+
assert rx.shape == mx.shape == (M,)
|
| 83 |
+
assert ry.shape == my.shape == (N, 1)
|
| 84 |
+
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
|
| 85 |
+
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
|
| 86 |
+
return y.to(dtype=x.dtype)
|
| 87 |
+
else:
|
| 88 |
+
os.environ["RWKV_CUDA_ON"] = '0'
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@MyStatic
|
| 92 |
+
def torch_mm8_seq(x, w, mx, rx, my, ry):
|
| 93 |
+
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
| 94 |
+
|
| 95 |
+
@MyStatic
|
| 96 |
+
def torch_mm8_one(x, w, mx, rx, my, ry):
|
| 97 |
+
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
| 98 |
+
|
| 99 |
+
if os.environ.get('RWKV_CUDA_ON') == '1':
|
| 100 |
+
@MyStatic
|
| 101 |
+
def mm8_seq(x, w, mx, rx, my, ry):
|
| 102 |
+
if w.device.type == 'cuda' and x.dtype == torch.float16:
|
| 103 |
+
B, N, M = x.shape[0], w.shape[0], w.shape[1]
|
| 104 |
+
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
|
| 105 |
+
else:
|
| 106 |
+
return torch_mm8_seq(x, w, mx, rx, my, ry)
|
| 107 |
+
@MyStatic
|
| 108 |
+
def mm8_one(x, w, mx, rx, my, ry):
|
| 109 |
+
if w.device.type == 'cuda':
|
| 110 |
+
N, M = w.shape[0], w.shape[1]
|
| 111 |
+
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
|
| 112 |
+
else:
|
| 113 |
+
return torch_mm8_one(x, w, mx, rx, my, ry)
|
| 114 |
+
else:
|
| 115 |
+
@MyStatic
|
| 116 |
+
def mm8_seq(x, w, mx, rx, my, ry):
|
| 117 |
+
return torch_mm8_seq(x, w, mx, rx, my, ry)
|
| 118 |
+
@MyStatic
|
| 119 |
+
def mm8_one(x, w, mx, rx, my, ry):
|
| 120 |
+
return torch_mm8_one(x, w, mx, rx, my, ry)
|
| 121 |
+
|
| 122 |
+
def mm8(x: torch.Tensor, w: torch.Tensor, mx: torch.Tensor, rx: torch.Tensor, my: torch.Tensor, ry: torch.Tensor):
|
| 123 |
+
if len(x.shape) == 1:
|
| 124 |
+
return mm8_one(x, w, mx, rx, my, ry)
|
| 125 |
+
return mm8_seq(x, w, mx, rx, my, ry)
|
| 126 |
+
|
| 127 |
+
def matmul(a, b, mx: Optional[torch.Tensor]=None, rx: Optional[torch.Tensor]=None, my: Optional[torch.Tensor]=None, ry: Optional[torch.Tensor]=None, output_dtype: Optional[torch.dtype]=None) -> torch.Tensor:
|
| 128 |
+
if output_dtype is None:
|
| 129 |
+
output_dtype = a.dtype
|
| 130 |
+
if b.dtype in [torch.float16, torch.bfloat16, torch.float32]:
|
| 131 |
+
assert a.dtype == b.dtype
|
| 132 |
+
return matmul_float(a, b, output_dtype=output_dtype)
|
| 133 |
+
elif b.dtype == torch.uint8:
|
| 134 |
+
assert mx is not None
|
| 135 |
+
assert rx is not None
|
| 136 |
+
assert my is not None
|
| 137 |
+
assert ry is not None
|
| 138 |
+
return mm8(a, b, mx, rx, my, ry).to(output_dtype)
|
| 139 |
+
else:
|
| 140 |
+
raise ValueError("Unsupported dtype")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
if os.environ.get('RWKV_CUDA_ON') == '1' and not DISABLE_CUBLAS_GEMM:
|
| 144 |
+
def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
|
| 145 |
+
if output_dtype is None:
|
| 146 |
+
output_dtype = a.dtype
|
| 147 |
+
if a.dtype == b.dtype == torch.float16 and a.device.type == 'cuda':
|
| 148 |
+
if len(a.shape) == 1:
|
| 149 |
+
assert len(b.shape) == 2
|
| 150 |
+
c = torch.empty((b.shape[-1],), dtype=output_dtype, device=a.device)
|
| 151 |
+
a = a.unsqueeze(0)
|
| 152 |
+
else:
|
| 153 |
+
assert len(a.shape) == len(b.shape)
|
| 154 |
+
assert len(a.shape) == 2 or len(a.shape) == 3
|
| 155 |
+
# torch.empty((*a.shape[:-1], b.shape[-1])) doesn't work with jit
|
| 156 |
+
if len(a.shape) == 2:
|
| 157 |
+
c = torch.empty((a.shape[0], b.shape[-1]), dtype=output_dtype, device=a.device)
|
| 158 |
+
else:
|
| 159 |
+
c = torch.empty((a.shape[0], a.shape[1], b.shape[-1]), dtype=output_dtype, device=a.device)
|
| 160 |
+
torch.ops.rwkv.gemm_fp16_cublas(a, b, c)
|
| 161 |
+
return c
|
| 162 |
+
else:
|
| 163 |
+
return (a @ b).to(output_dtype)
|
| 164 |
+
|
| 165 |
+
else:
|
| 166 |
+
def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
|
| 167 |
+
return (a @ b).to(output_dtype)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if os.environ.get('RWKV_DML_ON') == '1':
|
| 171 |
+
import torch_directml
|
| 172 |
+
print("PyTorch with DirectML Enabled")
|
| 173 |
+
|
| 174 |
+
########################################################################################################
|
| 175 |
+
|
| 176 |
+
class RWKV(MyModule):
|
| 177 |
+
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
|
| 178 |
+
super().__init__()
|
| 179 |
+
if verbose:
|
| 180 |
+
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
|
| 181 |
+
else:
|
| 182 |
+
prxxx = lambda *args, **kwargs: None
|
| 183 |
+
|
| 184 |
+
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
| 185 |
+
if not re.match(STRATEGY_REGEX, strategy):
|
| 186 |
+
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
|
| 187 |
+
|
| 188 |
+
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
|
| 189 |
+
self.args = types.SimpleNamespace()
|
| 190 |
+
args = self.args
|
| 191 |
+
args.MODEL_NAME = model
|
| 192 |
+
args.strategy_string = strategy
|
| 193 |
+
|
| 194 |
+
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
|
| 195 |
+
try:
|
| 196 |
+
self.RESCALE_LAYER = int(os.environ["RWKV_RESCALE_LAYER"]) # !!! NOTE: SEEMS YOU SHOULD SET IT TO 999 (disable) FOR RWKV-MUSIC MODELS !!!
|
| 197 |
+
except:
|
| 198 |
+
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
|
| 199 |
+
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
|
| 200 |
+
|
| 201 |
+
args.MODEL_NAME = args.MODEL_NAME.strip()
|
| 202 |
+
if not args.MODEL_NAME.endswith('.pth'):
|
| 203 |
+
args.MODEL_NAME += '.pth'
|
| 204 |
+
prxxx(f'Loading {args.MODEL_NAME} ...')
|
| 205 |
+
with torch.no_grad():
|
| 206 |
+
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
|
| 207 |
+
gc.collect()
|
| 208 |
+
w = self.w
|
| 209 |
+
|
| 210 |
+
ALREADY_CONVERTED = False
|
| 211 |
+
if '_strategy' in w:
|
| 212 |
+
ALREADY_CONVERTED = True
|
| 213 |
+
assert convert_and_save_and_exit == None # you should only convert a raw model
|
| 214 |
+
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
|
| 215 |
+
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
|
| 216 |
+
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
|
| 217 |
+
assert w['_rescale_layer'] == self.RESCALE_LAYER # must use same RESCALE_LAYER to avoid mistakes
|
| 218 |
+
del w['_strategy']
|
| 219 |
+
del w['_version']
|
| 220 |
+
del w['_rescale_layer']
|
| 221 |
+
|
| 222 |
+
args.n_embd = w['emb.weight'].shape[1]
|
| 223 |
+
args.n_att = w['blocks.0.att.key.weight'].shape[0] # note: transposed matrix
|
| 224 |
+
args.n_ffn = w['blocks.0.ffn.key.weight'].shape[0] # note: transposed matrix
|
| 225 |
+
args.n_layer = 0
|
| 226 |
+
keys = list(w.keys())
|
| 227 |
+
self.version = 4
|
| 228 |
+
for x in keys:
|
| 229 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
| 230 |
+
args.n_layer = max(args.n_layer, layer_id+1)
|
| 231 |
+
if 'ln_x' in x:
|
| 232 |
+
self.version = max(5, self.version)
|
| 233 |
+
if 'gate.weight' in x:
|
| 234 |
+
self.version = max(5.1, self.version)
|
| 235 |
+
if int(self.version) == 5 and 'att.time_decay' in x:
|
| 236 |
+
args.n_head = w[x].shape[0]
|
| 237 |
+
if len(w[x].shape) > 1:
|
| 238 |
+
if w[x].shape[1] > 1:
|
| 239 |
+
self.version = max(5.2, self.version)
|
| 240 |
+
if 'time_maa' in x:
|
| 241 |
+
self.version = max(6, self.version)
|
| 242 |
+
if int(self.version) == 6 and 'time_faaaa' in x:
|
| 243 |
+
args.n_head = w[x].shape[0]
|
| 244 |
+
prxxx(f'Model detected: v{self.version:.1f}')
|
| 245 |
+
|
| 246 |
+
####################### Compute strategy
|
| 247 |
+
|
| 248 |
+
s = [x.strip().split(' ') for x in strategy.split('->')]
|
| 249 |
+
plan = [0] * len(s)
|
| 250 |
+
stream_i = -1
|
| 251 |
+
stream_count = 0
|
| 252 |
+
to_allocate = args.n_layer + 1
|
| 253 |
+
allocated = 0
|
| 254 |
+
free_slots = 0
|
| 255 |
+
for i in range(len(s)):
|
| 256 |
+
si = s[i]
|
| 257 |
+
si1 = si[1]
|
| 258 |
+
if si1.startswith('fp32'): si[1] = [torch.float]
|
| 259 |
+
elif si1.startswith('fp16'): si[1] = [torch.float16]
|
| 260 |
+
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
|
| 261 |
+
if si1.endswith('i8'): si[1] += [torch.uint8]
|
| 262 |
+
else: si[1] += [si[1][0]]
|
| 263 |
+
if len(si) > 2:
|
| 264 |
+
ss = si[2]
|
| 265 |
+
assert ss.startswith('*')
|
| 266 |
+
if ss.endswith('+'):
|
| 267 |
+
plan[i] = int(ss[1:-1])
|
| 268 |
+
stream_i = i
|
| 269 |
+
else:
|
| 270 |
+
plan[i] = int(ss[1:])
|
| 271 |
+
allocated += plan[i]
|
| 272 |
+
if allocated >= to_allocate:
|
| 273 |
+
plan[i] += to_allocate - allocated
|
| 274 |
+
break
|
| 275 |
+
else:
|
| 276 |
+
free_slots += 1
|
| 277 |
+
if stream_i < 0:
|
| 278 |
+
if free_slots > 0 and to_allocate > allocated:
|
| 279 |
+
for i in range(len(s)):
|
| 280 |
+
if plan[i] == 0:
|
| 281 |
+
plan[i] = (to_allocate - allocated) // free_slots
|
| 282 |
+
allocated += plan[i]
|
| 283 |
+
free_slots -= 1
|
| 284 |
+
if to_allocate > allocated:
|
| 285 |
+
plan[len(s)-1] += to_allocate - allocated
|
| 286 |
+
else:
|
| 287 |
+
if to_allocate > allocated:
|
| 288 |
+
stream_count = to_allocate - allocated
|
| 289 |
+
plan[stream_i] += stream_count
|
| 290 |
+
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
|
| 291 |
+
for i in range(len(s)):
|
| 292 |
+
ss = s[i]
|
| 293 |
+
if i != stream_i:
|
| 294 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
|
| 295 |
+
else:
|
| 296 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
|
| 297 |
+
plan[i] += (0 if i == 0 else plan[i-1])
|
| 298 |
+
self.strategy = [None] * (args.n_layer + 1)
|
| 299 |
+
strategy = self.strategy
|
| 300 |
+
for n in range(args.n_layer + 1):
|
| 301 |
+
for i in range(len(s)):
|
| 302 |
+
if n < plan[i]:
|
| 303 |
+
strategy[n] = types.SimpleNamespace()
|
| 304 |
+
strategy[n].device = s[i][0]
|
| 305 |
+
strategy[n].atype = s[i][1][0]
|
| 306 |
+
strategy[n].wtype = s[i][1][1]
|
| 307 |
+
strategy[n].stream = False
|
| 308 |
+
if strategy[n].device == 'dml':
|
| 309 |
+
strategy[n].device = torch_directml.device()
|
| 310 |
+
if i == stream_i and n >= (plan[i] - stream_count):
|
| 311 |
+
strategy[n].stream = True
|
| 312 |
+
break
|
| 313 |
+
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
|
| 314 |
+
prxxx()
|
| 315 |
+
|
| 316 |
+
####################### Load weights to self.w
|
| 317 |
+
|
| 318 |
+
if not ALREADY_CONVERTED:
|
| 319 |
+
try: # precompute embedding
|
| 320 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
|
| 321 |
+
except:
|
| 322 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
|
| 323 |
+
del w['blocks.0.ln0.weight']
|
| 324 |
+
del w['blocks.0.ln0.bias']
|
| 325 |
+
|
| 326 |
+
print_need_newline = False
|
| 327 |
+
|
| 328 |
+
REAL_TIME_FIRST = False
|
| 329 |
+
for x in list(w.keys()):
|
| 330 |
+
if '.time_faaaa' in x: REAL_TIME_FIRST = True
|
| 331 |
+
if REAL_TIME_FIRST:
|
| 332 |
+
w = {k.replace('.time_faaaa','.time_first') if '.time_faaaa' in k else k: v for k, v in w.items()}
|
| 333 |
+
self.w = w
|
| 334 |
+
|
| 335 |
+
keys = list(w.keys())
|
| 336 |
+
for x in keys:
|
| 337 |
+
w[x].requires_grad = False
|
| 338 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
| 339 |
+
if ('ln_out.' in x) or ('head.' in x):
|
| 340 |
+
layer_id = args.n_layer
|
| 341 |
+
dd = strategy[layer_id]
|
| 342 |
+
DEVICE = dd.device
|
| 343 |
+
ATYPE = dd.atype
|
| 344 |
+
WTYPE = dd.wtype
|
| 345 |
+
|
| 346 |
+
if not ALREADY_CONVERTED:
|
| 347 |
+
if self.RESCALE_LAYER > 0:
|
| 348 |
+
if 'att.output.weight' in x:
|
| 349 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
| 350 |
+
if 'ffn.value.weight' in x:
|
| 351 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
| 352 |
+
|
| 353 |
+
if '.time_' in x:
|
| 354 |
+
w[x] = w[x].squeeze()
|
| 355 |
+
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'gate.weight' in x or 'output.weight' in x or 'head.weight' in x:
|
| 356 |
+
w[x] = w[x].t()
|
| 357 |
+
|
| 358 |
+
if '.time_decay' in x and '_w' not in x: # need fp32 for this
|
| 359 |
+
if self.version == 4:
|
| 360 |
+
w[x] = -torch.exp(w[x].float())
|
| 361 |
+
elif int(self.version) == 5:
|
| 362 |
+
w[x] = torch.exp(-torch.exp(w[x].float())).reshape(-1,1,1)
|
| 363 |
+
if self.version == 5.2:
|
| 364 |
+
w[x] = w[x].reshape(args.n_head, -1, 1)
|
| 365 |
+
elif self.version == 6.0:
|
| 366 |
+
w[x] = w[x].float().reshape(args.n_head, -1, 1)
|
| 367 |
+
elif '.time_first' in x: # need fp32 for this
|
| 368 |
+
if self.version == 4:
|
| 369 |
+
w[x] = w[x].float()
|
| 370 |
+
elif int(self.version) in [5, 6]:
|
| 371 |
+
if REAL_TIME_FIRST:
|
| 372 |
+
w[x] = w[x].float().reshape(-1,1,1)
|
| 373 |
+
else:
|
| 374 |
+
w[x] = torch.exp(w[x].float()).reshape(-1,1,1)
|
| 375 |
+
if self.version in [5.2, 6.0]:
|
| 376 |
+
w[x] = w[x].reshape(args.n_head, -1, 1)
|
| 377 |
+
elif '.ln_x' in x: # need fp32 for group_norm
|
| 378 |
+
w[x] = w[x].float()
|
| 379 |
+
else:
|
| 380 |
+
if (len(w[x].shape) == 2) and ('emb' not in x):
|
| 381 |
+
if WTYPE != torch.uint8:
|
| 382 |
+
w[x] = w[x].to(dtype=WTYPE)
|
| 383 |
+
else:
|
| 384 |
+
w[x] = w[x].float()
|
| 385 |
+
|
| 386 |
+
if w[x].shape[0] > w[x].shape[1]:
|
| 387 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
| 388 |
+
w[x] = w[x] - w[x+'_my']
|
| 389 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
| 390 |
+
w[x] = w[x] - w[x+'_mx']
|
| 391 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
| 392 |
+
w[x] = w[x] / w[x+'_rx']
|
| 393 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
| 394 |
+
w[x] = w[x] / w[x+'_ry']
|
| 395 |
+
else:
|
| 396 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
| 397 |
+
w[x] = w[x] - w[x+'_mx']
|
| 398 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
| 399 |
+
w[x] = w[x] - w[x+'_my']
|
| 400 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
| 401 |
+
w[x] = w[x] / w[x+'_rx']
|
| 402 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
| 403 |
+
w[x] = w[x] / w[x+'_ry']
|
| 404 |
+
|
| 405 |
+
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
|
| 406 |
+
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
|
| 407 |
+
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
|
| 408 |
+
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
|
| 409 |
+
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
|
| 410 |
+
else:
|
| 411 |
+
w[x] = w[x].to(dtype=ATYPE)
|
| 412 |
+
|
| 413 |
+
if convert_and_save_and_exit == None:
|
| 414 |
+
if 'emb.' in x:
|
| 415 |
+
w[x] = w[x].contiguous()
|
| 416 |
+
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
|
| 417 |
+
try:
|
| 418 |
+
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
|
| 419 |
+
except:
|
| 420 |
+
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
|
| 421 |
+
elif DEVICE != 'cpu':
|
| 422 |
+
w[x] = w[x].to(device=DEVICE).contiguous()
|
| 423 |
+
|
| 424 |
+
if (dd.stream) or (DEVICE != 'cpu'):
|
| 425 |
+
try:
|
| 426 |
+
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
|
| 427 |
+
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
|
| 428 |
+
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
|
| 429 |
+
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
|
| 430 |
+
except:
|
| 431 |
+
pass
|
| 432 |
+
|
| 433 |
+
if 'ffn.value.weight' in x:
|
| 434 |
+
gc.collect()
|
| 435 |
+
if 'cuda' in args.strategy_string:
|
| 436 |
+
torch.cuda.empty_cache()
|
| 437 |
+
|
| 438 |
+
shape = [i for i in w[x].shape if i != 1]
|
| 439 |
+
if len(shape) > 1:
|
| 440 |
+
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
| 441 |
+
else:
|
| 442 |
+
shape = f" {str(shape[0]).rjust(5)} "
|
| 443 |
+
if layer_id == 0 or layer_id >= args.n_layer-1:
|
| 444 |
+
if print_need_newline:
|
| 445 |
+
prxxx('\n', end = '')
|
| 446 |
+
print_need_newline = False
|
| 447 |
+
dt = str(w[x].dtype).replace('torch.', '')
|
| 448 |
+
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
|
| 449 |
+
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
|
| 450 |
+
else:
|
| 451 |
+
print_need_newline = True
|
| 452 |
+
prxxx('.', end = '', flush = True)
|
| 453 |
+
|
| 454 |
+
if convert_and_save_and_exit:
|
| 455 |
+
w['_strategy'] = args.strategy_string
|
| 456 |
+
w['_rescale_layer'] = self.RESCALE_LAYER
|
| 457 |
+
w['_version'] = '0.7'
|
| 458 |
+
if not convert_and_save_and_exit.endswith('.pth'):
|
| 459 |
+
convert_and_save_and_exit += '.pth'
|
| 460 |
+
prxxx(f'Saving to {convert_and_save_and_exit}...')
|
| 461 |
+
torch.save(w, convert_and_save_and_exit)
|
| 462 |
+
prxxx(f'Converted and saved. Now this will exit.')
|
| 463 |
+
exit(0)
|
| 464 |
+
|
| 465 |
+
if self.version == 5.2 and os.environ["RWKV_CUDA_ON"] == '1':
|
| 466 |
+
HEAD_SIZE = args.n_att // args.n_head
|
| 467 |
+
rwkv5 = load(name="rwkv5", sources=[f"{current_path}/cuda/rwkv5_op.cpp", f"{current_path}/cuda/rwkv5.cu"],
|
| 468 |
+
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3" if os.name != "nt" else "", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}"])
|
| 469 |
+
|
| 470 |
+
class RWKV_5(torch.autograd.Function):
|
| 471 |
+
@staticmethod
|
| 472 |
+
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
|
| 473 |
+
with torch.no_grad():
|
| 474 |
+
assert HEAD_SIZE == C // H
|
| 475 |
+
ctx.B = B
|
| 476 |
+
ctx.T = T
|
| 477 |
+
ctx.C = C
|
| 478 |
+
ctx.H = H
|
| 479 |
+
assert state.dtype == torch.float32
|
| 480 |
+
assert w.dtype == torch.float32
|
| 481 |
+
assert r.is_contiguous()
|
| 482 |
+
assert k.is_contiguous()
|
| 483 |
+
assert v.is_contiguous()
|
| 484 |
+
assert w.is_contiguous()
|
| 485 |
+
assert u.is_contiguous()
|
| 486 |
+
assert state.is_contiguous()
|
| 487 |
+
|
| 488 |
+
y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
|
| 489 |
+
if r.dtype == torch.bfloat16:
|
| 490 |
+
rwkv5.forward_bf16(B, T, C, H, state, r, k, v, w, u, y)
|
| 491 |
+
elif r.dtype == torch.float16:
|
| 492 |
+
rwkv5.forward_fp16(B, T, C, H, state, r, k, v, w, u, y)
|
| 493 |
+
elif r.dtype == torch.float32:
|
| 494 |
+
rwkv5.forward_fp32(B, T, C, H, state, r, k, v, w, u, y)
|
| 495 |
+
return y, state
|
| 496 |
+
self.RWKV_5 = RWKV_5
|
| 497 |
+
|
| 498 |
+
if self.version == 6.0 and os.environ["RWKV_CUDA_ON"] == '1':
|
| 499 |
+
HEAD_SIZE = args.n_att // args.n_head
|
| 500 |
+
rwkv6 = load(name="rwkv6", sources=[f"{current_path}/cuda/rwkv6_op.cpp", f"{current_path}/cuda/rwkv6.cu"],
|
| 501 |
+
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}", f"-D_T_={4096}"])
|
| 502 |
+
|
| 503 |
+
class RWKV_6(torch.autograd.Function):
|
| 504 |
+
@staticmethod
|
| 505 |
+
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
|
| 506 |
+
with torch.no_grad():
|
| 507 |
+
assert HEAD_SIZE == C // H
|
| 508 |
+
ctx.B = B
|
| 509 |
+
ctx.T = T
|
| 510 |
+
ctx.C = C
|
| 511 |
+
ctx.H = H
|
| 512 |
+
assert state.dtype == torch.float32
|
| 513 |
+
assert w.dtype == torch.float32
|
| 514 |
+
assert r.is_contiguous()
|
| 515 |
+
assert k.is_contiguous()
|
| 516 |
+
assert v.is_contiguous()
|
| 517 |
+
assert w.is_contiguous()
|
| 518 |
+
assert u.is_contiguous()
|
| 519 |
+
eew = torch.exp(-torch.exp(w.float())).contiguous()
|
| 520 |
+
|
| 521 |
+
y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
|
| 522 |
+
if r.dtype == torch.bfloat16:
|
| 523 |
+
rwkv6.forward_bf16(B, T, C, H, state, r, k, v, eew, u, y)
|
| 524 |
+
elif r.dtype == torch.float16:
|
| 525 |
+
rwkv6.forward_fp16(B, T, C, H, state, r, k, v, eew, u, y)
|
| 526 |
+
elif r.dtype == torch.float32:
|
| 527 |
+
rwkv6.forward_fp32(B, T, C, H, state, r, k, v, eew, u, y)
|
| 528 |
+
return y, state
|
| 529 |
+
self.RWKV_6 = RWKV_6
|
| 530 |
+
|
| 531 |
+
gc.collect()
|
| 532 |
+
if 'cuda' in args.strategy_string:
|
| 533 |
+
torch.cuda.empty_cache()
|
| 534 |
+
|
| 535 |
+
def RUN_RWKV_5(self, B, T, C, H, state, r, k, v, w, u):
|
| 536 |
+
return self.RWKV_5.apply(B, T, C, H, state, r, k, v, w, u)
|
| 537 |
+
|
| 538 |
+
def RUN_RWKV_6(self, B, T, C, H, state, r, k, v, w, u):
|
| 539 |
+
return self.RWKV_6.apply(B, T, C, H, state, r, k, v, w, u)
|
| 540 |
+
|
| 541 |
+
########################################################################################################
|
| 542 |
+
|
| 543 |
+
@MyFunction
|
| 544 |
+
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
| 545 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 546 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 547 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 548 |
+
|
| 549 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 550 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
| 551 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
| 552 |
+
return x + out, xx
|
| 553 |
+
|
| 554 |
+
@MyFunction
|
| 555 |
+
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
| 556 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 557 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 558 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 559 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 560 |
+
|
| 561 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 562 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
| 563 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
| 564 |
+
return x + out, xx[-1,:]
|
| 565 |
+
|
| 566 |
+
@MyFunction
|
| 567 |
+
def ffn_one_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
| 568 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 569 |
+
sx = sx - xx
|
| 570 |
+
kx = xx + sx * k_maa
|
| 571 |
+
rx = xx + sx * r_maa
|
| 572 |
+
|
| 573 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 574 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
| 575 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
| 576 |
+
return x + out, xx
|
| 577 |
+
|
| 578 |
+
@MyFunction
|
| 579 |
+
def ffn_seq_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
| 580 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 581 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 582 |
+
sx = sx - xx
|
| 583 |
+
kx = xx + sx * k_maa
|
| 584 |
+
rx = xx + sx * r_maa
|
| 585 |
+
|
| 586 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 587 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
| 588 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
| 589 |
+
return x + out, xx[-1,:]
|
| 590 |
+
|
| 591 |
+
########################################################################################################
|
| 592 |
+
|
| 593 |
+
@MyFunction
|
| 594 |
+
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
| 595 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 596 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 597 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 598 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 599 |
+
|
| 600 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 601 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
| 602 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
| 603 |
+
|
| 604 |
+
ww = t_first + k
|
| 605 |
+
p = torch.maximum(pp, ww)
|
| 606 |
+
e1 = torch.exp(pp - p)
|
| 607 |
+
e2 = torch.exp(ww - p)
|
| 608 |
+
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
| 609 |
+
ww = t_decay + pp
|
| 610 |
+
p = torch.maximum(ww, k)
|
| 611 |
+
e1 = torch.exp(ww - p)
|
| 612 |
+
e2 = torch.exp(k - p)
|
| 613 |
+
|
| 614 |
+
out = matmul(r * wkv, ow, omx, orx, omy, ory)
|
| 615 |
+
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
| 616 |
+
|
| 617 |
+
@MyFunction
|
| 618 |
+
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
| 619 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 620 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 621 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 622 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 623 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 624 |
+
|
| 625 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 626 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
| 627 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
| 628 |
+
|
| 629 |
+
T = x.shape[0]
|
| 630 |
+
for t in range(T):
|
| 631 |
+
kk = k[t]
|
| 632 |
+
vv = v[t]
|
| 633 |
+
ww = t_first + kk
|
| 634 |
+
p = torch.maximum(pp, ww)
|
| 635 |
+
e1 = torch.exp(pp - p)
|
| 636 |
+
e2 = torch.exp(ww - p)
|
| 637 |
+
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
| 638 |
+
ww = t_decay + pp
|
| 639 |
+
p = torch.maximum(ww, kk)
|
| 640 |
+
e1 = torch.exp(ww - p)
|
| 641 |
+
e2 = torch.exp(kk - p)
|
| 642 |
+
aa = e1 * aa + e2 * vv
|
| 643 |
+
bb = e1 * bb + e2
|
| 644 |
+
pp = p
|
| 645 |
+
out = matmul(r * sx, ow, omx, orx, omy, ory)
|
| 646 |
+
return x + out, xx[-1,:], aa, bb, pp
|
| 647 |
+
|
| 648 |
+
########################################################################################################
|
| 649 |
+
|
| 650 |
+
@MyFunction
|
| 651 |
+
def att_one_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
| 652 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 653 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 654 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 655 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 656 |
+
|
| 657 |
+
H = t_decay.shape[0]
|
| 658 |
+
N = x.shape[-1] // H
|
| 659 |
+
|
| 660 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
| 661 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
| 662 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
| 663 |
+
|
| 664 |
+
a = matmul(k, v)
|
| 665 |
+
out = r @ (t_first * a + s)
|
| 666 |
+
s = a + t_decay * s
|
| 667 |
+
|
| 668 |
+
out = out.flatten()
|
| 669 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
| 670 |
+
out = out.to(dtype=x.dtype)
|
| 671 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 672 |
+
|
| 673 |
+
return x + out, xx, s
|
| 674 |
+
|
| 675 |
+
@MyFunction
|
| 676 |
+
def att_seq_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
| 677 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 678 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 679 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 680 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 681 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 682 |
+
|
| 683 |
+
H = t_decay.shape[0]
|
| 684 |
+
N = x.shape[-1] // H
|
| 685 |
+
T = x.shape[0]
|
| 686 |
+
|
| 687 |
+
w = t_decay.reshape(-1, 1)
|
| 688 |
+
u = t_first.reshape(-1, 1)
|
| 689 |
+
ws = w.pow(T).reshape(H, 1, 1)
|
| 690 |
+
ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
|
| 691 |
+
w = w.repeat(1, T).pow(ind)
|
| 692 |
+
wk = w.reshape(H, 1, T)
|
| 693 |
+
wb = wk.transpose(-2, -1).flip(1)
|
| 694 |
+
w = torch.cat([w[:, 1:], u], dim=1)
|
| 695 |
+
w = F.pad(w, (0, T))
|
| 696 |
+
w = torch.tile(w, [T])
|
| 697 |
+
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
|
| 698 |
+
w = w[:, :, T-1:].reshape(H, T, T)
|
| 699 |
+
|
| 700 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 701 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
| 702 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 703 |
+
|
| 704 |
+
out = ((r @ k) * w) @ v + (r @ s) * wb
|
| 705 |
+
s = ws * s + (k * wk) @ v
|
| 706 |
+
|
| 707 |
+
out = out.transpose(0, 1).contiguous().reshape(T, H*N)
|
| 708 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
| 709 |
+
out = out.to(dtype=x.dtype)
|
| 710 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 711 |
+
|
| 712 |
+
return x + out, xx[-1,:], s
|
| 713 |
+
|
| 714 |
+
########################################################################################################
|
| 715 |
+
|
| 716 |
+
@MyFunction
|
| 717 |
+
def att_one_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 718 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 719 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 720 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 721 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 722 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
| 723 |
+
|
| 724 |
+
H = t_decay.shape[0]
|
| 725 |
+
N = x.shape[-1] // H
|
| 726 |
+
|
| 727 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
| 728 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
| 729 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
| 730 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 731 |
+
|
| 732 |
+
a = matmul(k, v)
|
| 733 |
+
out = r @ (t_first * a + s)
|
| 734 |
+
s = a + t_decay * s
|
| 735 |
+
|
| 736 |
+
out = out.flatten()
|
| 737 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
| 738 |
+
out = out.to(dtype=x.dtype) * g
|
| 739 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 740 |
+
|
| 741 |
+
return x + out, xx, s
|
| 742 |
+
|
| 743 |
+
@MyFunction
|
| 744 |
+
def att_seq_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 745 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 746 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 747 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 748 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 749 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 750 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
| 751 |
+
|
| 752 |
+
H = t_decay.shape[0]
|
| 753 |
+
N = x.shape[-1] // H
|
| 754 |
+
T = x.shape[0]
|
| 755 |
+
|
| 756 |
+
w = t_decay.reshape(-1, 1)
|
| 757 |
+
u = t_first.reshape(-1, 1)
|
| 758 |
+
ws = w.pow(T).reshape(H, 1, 1)
|
| 759 |
+
ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
|
| 760 |
+
w = w.repeat(1, T).pow(ind)
|
| 761 |
+
wk = w.reshape(H, 1, T)
|
| 762 |
+
wb = wk.transpose(-2, -1).flip(1)
|
| 763 |
+
w = torch.cat([w[:, 1:], u], dim=1)
|
| 764 |
+
w = F.pad(w, (0, T))
|
| 765 |
+
w = torch.tile(w, [T])
|
| 766 |
+
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
|
| 767 |
+
w = w[:, :, T-1:].reshape(H, T, T)
|
| 768 |
+
|
| 769 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 770 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
| 771 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 772 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 773 |
+
|
| 774 |
+
out = ((r @ k) * w) @ v + (r @ s) * wb
|
| 775 |
+
s = ws * s + (k * wk) @ v
|
| 776 |
+
|
| 777 |
+
out = out.transpose(0, 1).contiguous().reshape(T, H*N)
|
| 778 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
| 779 |
+
out = out.to(dtype=x.dtype) * g
|
| 780 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 781 |
+
|
| 782 |
+
return x + out, xx[-1,:], s
|
| 783 |
+
|
| 784 |
+
########################################################################################################
|
| 785 |
+
|
| 786 |
+
@MyFunction
|
| 787 |
+
def att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 788 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 789 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 790 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 791 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 792 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 793 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
| 794 |
+
|
| 795 |
+
H = t_decay.shape[0]
|
| 796 |
+
N = x.shape[-1] // H
|
| 797 |
+
T = x.shape[0]
|
| 798 |
+
|
| 799 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 800 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
| 801 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 802 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 803 |
+
|
| 804 |
+
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
|
| 805 |
+
for t in range(T):
|
| 806 |
+
rt = r[:,t:t+1,:]
|
| 807 |
+
kt = k[:,:,t:t+1]
|
| 808 |
+
vt = v[:,t:t+1,:]
|
| 809 |
+
at = matmul(kt, vt)
|
| 810 |
+
out[t] = (rt @ (t_first * at + s)).squeeze(1)
|
| 811 |
+
s = at + t_decay * s
|
| 812 |
+
|
| 813 |
+
out = out.reshape(T, H*N)
|
| 814 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
| 815 |
+
out = out.to(dtype=x.dtype) * g
|
| 816 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 817 |
+
|
| 818 |
+
return x + out, xx[-1,:], s
|
| 819 |
+
|
| 820 |
+
########################################################################################################
|
| 821 |
+
|
| 822 |
+
@MyFunction
|
| 823 |
+
def att_one_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 824 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 825 |
+
|
| 826 |
+
sx = sx - xx
|
| 827 |
+
xxx = xx + sx * x_maa
|
| 828 |
+
xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
|
| 829 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, -1)
|
| 830 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
| 831 |
+
|
| 832 |
+
wx = xx + sx * (w_maa + mw)
|
| 833 |
+
kx = xx + sx * (k_maa + mk)
|
| 834 |
+
vx = xx + sx * (v_maa + mv)
|
| 835 |
+
rx = xx + sx * (r_maa + mr)
|
| 836 |
+
gx = xx + sx * (g_maa + mg)
|
| 837 |
+
|
| 838 |
+
H = t_decay.shape[0]
|
| 839 |
+
N = x.shape[-1] // H
|
| 840 |
+
|
| 841 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
| 842 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
| 843 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
| 844 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 845 |
+
|
| 846 |
+
w = t_decay + (torch.tanh(wx @ td_w1) @ td_w2).float().view(H, N, 1)
|
| 847 |
+
w = torch.exp(-torch.exp(w.float()))
|
| 848 |
+
|
| 849 |
+
a = matmul(k, v)
|
| 850 |
+
out = r @ (t_first * a + s)
|
| 851 |
+
s = a + w * s
|
| 852 |
+
|
| 853 |
+
out = out.flatten()
|
| 854 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
| 855 |
+
out = out.to(dtype=x.dtype) * g
|
| 856 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 857 |
+
|
| 858 |
+
return x + out, xx, s
|
| 859 |
+
|
| 860 |
+
@MyFunction
|
| 861 |
+
def att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 862 |
+
H = t_decay.shape[0]
|
| 863 |
+
N = x.shape[-1] // H
|
| 864 |
+
T = x.shape[0]
|
| 865 |
+
|
| 866 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 867 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
|
| 868 |
+
xxx = xx + sx * x_maa
|
| 869 |
+
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
|
| 870 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
|
| 871 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
| 872 |
+
|
| 873 |
+
wx = xx + sx * (w_maa + mw)
|
| 874 |
+
kx = xx + sx * (k_maa + mk)
|
| 875 |
+
vx = xx + sx * (v_maa + mv)
|
| 876 |
+
rx = xx + sx * (r_maa + mr)
|
| 877 |
+
gx = xx + sx * (g_maa + mg)
|
| 878 |
+
|
| 879 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 880 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
| 881 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
| 882 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 883 |
+
|
| 884 |
+
w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
|
| 885 |
+
w = torch.exp(-torch.exp(w.float()))
|
| 886 |
+
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
|
| 887 |
+
for t in range(T):
|
| 888 |
+
rt = r[:,t:t+1,:]
|
| 889 |
+
kt = k[:,:,t:t+1]
|
| 890 |
+
vt = v[:,t:t+1,:]
|
| 891 |
+
at = matmul(kt, vt)
|
| 892 |
+
out[t] = (rt @ (t_first * at + s)).squeeze(1)
|
| 893 |
+
s = at + w[t] * s
|
| 894 |
+
|
| 895 |
+
out = out.reshape(T, H*N)
|
| 896 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
| 897 |
+
out = out.to(dtype=x.dtype) * g
|
| 898 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 899 |
+
|
| 900 |
+
return x + out, xx[-1,:], s
|
| 901 |
+
|
| 902 |
+
########################################################################################################
|
| 903 |
+
|
| 904 |
+
if os.environ["RWKV_CUDA_ON"] == '1':
|
| 905 |
+
@MyFunction
|
| 906 |
+
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
| 907 |
+
T, C = x.shape
|
| 908 |
+
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
| 909 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 910 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 911 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 912 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 913 |
+
|
| 914 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
| 915 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
| 916 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
| 917 |
+
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
| 918 |
+
|
| 919 |
+
out = matmul(r * y.to(x.dtype), ow, omx, orx, omy, ory)
|
| 920 |
+
return x + out, xx[-1,:], aa, bb, pp
|
| 921 |
+
|
| 922 |
+
@MyFunction
|
| 923 |
+
def v5_2_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 924 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 925 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
| 926 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
| 927 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
| 928 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
| 929 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
| 930 |
+
|
| 931 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
|
| 932 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
| 933 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
| 934 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 935 |
+
|
| 936 |
+
return r, k, v, g, xx[-1,:], s.transpose(-1,-2).contiguous()
|
| 937 |
+
|
| 938 |
+
@MyFunction
|
| 939 |
+
def v5_2_after(self, t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory):
|
| 940 |
+
H = t_decay.shape[0]
|
| 941 |
+
N = x.shape[-1] // H
|
| 942 |
+
T = x.shape[0]
|
| 943 |
+
|
| 944 |
+
s = s.transpose(-1,-2)
|
| 945 |
+
out = out.reshape(T, H*N)
|
| 946 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
| 947 |
+
out = out.to(dtype=x.dtype) * g
|
| 948 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
| 949 |
+
|
| 950 |
+
return x + out, xxx, s
|
| 951 |
+
|
| 952 |
+
def cuda_att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 953 |
+
H = t_decay.shape[0]
|
| 954 |
+
N = x.shape[-1] // H
|
| 955 |
+
T = x.shape[0]
|
| 956 |
+
|
| 957 |
+
r, k, v, g, xxx, ss = self.v5_2_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
|
| 958 |
+
|
| 959 |
+
out, s = self.RUN_RWKV_5(1, T, self.args.n_att, H, ss, r, k, v, w=t_decay, u=t_first)
|
| 960 |
+
|
| 961 |
+
return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
|
| 962 |
+
|
| 963 |
+
@MyFunction
|
| 964 |
+
def v6_0_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 965 |
+
H = t_decay.shape[0]
|
| 966 |
+
N = x.shape[-1] // H
|
| 967 |
+
T = x.shape[0]
|
| 968 |
+
|
| 969 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
| 970 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
|
| 971 |
+
xxx = xx + sx * x_maa
|
| 972 |
+
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
|
| 973 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
|
| 974 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
| 975 |
+
|
| 976 |
+
wx = xx + sx * (w_maa + mw)
|
| 977 |
+
kx = xx + sx * (k_maa + mk)
|
| 978 |
+
vx = xx + sx * (v_maa + mv)
|
| 979 |
+
rx = xx + sx * (r_maa + mr)
|
| 980 |
+
gx = xx + sx * (g_maa + mg)
|
| 981 |
+
|
| 982 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
|
| 983 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
| 984 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
| 985 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
| 986 |
+
|
| 987 |
+
w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
|
| 988 |
+
|
| 989 |
+
return r, k, v, g, w, xx[-1,:], s.transpose(-1,-2).contiguous()
|
| 990 |
+
|
| 991 |
+
def cuda_att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
| 992 |
+
H = t_decay.shape[0]
|
| 993 |
+
N = x.shape[-1] // H
|
| 994 |
+
T = x.shape[0]
|
| 995 |
+
|
| 996 |
+
r, k, v, g, w, xxx, ss = self.v6_0_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
|
| 997 |
+
|
| 998 |
+
out, s = self.RUN_RWKV_6(1, T, self.args.n_att, H, ss, r, k, v, w=w, u=t_first)
|
| 999 |
+
return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
|
| 1000 |
+
|
| 1001 |
+
########################################################################################################
|
| 1002 |
+
|
| 1003 |
+
def forward(self, tokens, state, full_output=False, embs=None):
|
| 1004 |
+
with torch.no_grad():
|
| 1005 |
+
w = self.w
|
| 1006 |
+
args = self.args
|
| 1007 |
+
|
| 1008 |
+
if state == None:
|
| 1009 |
+
if self.version == 4:
|
| 1010 |
+
state = [None] * args.n_layer * 5
|
| 1011 |
+
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
| 1012 |
+
dd = self.strategy[i]
|
| 1013 |
+
dev = dd.device
|
| 1014 |
+
atype = dd.atype
|
| 1015 |
+
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
| 1016 |
+
state[i*5+1] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
| 1017 |
+
state[i*5+2] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
| 1018 |
+
state[i*5+3] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
|
| 1019 |
+
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
| 1020 |
+
elif int(self.version) in [5,6]:
|
| 1021 |
+
state = [None] * args.n_layer * 3
|
| 1022 |
+
for i in range(args.n_layer): # state: 0=att_xx 1=att_kv 2=ffn_xx
|
| 1023 |
+
dd = self.strategy[i]
|
| 1024 |
+
dev = dd.device
|
| 1025 |
+
atype = dd.atype
|
| 1026 |
+
state[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
| 1027 |
+
state[i*3+1] = torch.zeros((args.n_head, args.n_att//args.n_head, args.n_att//args.n_head), dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
| 1028 |
+
state[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
| 1029 |
+
|
| 1030 |
+
if embs is None:
|
| 1031 |
+
seq_mode = len(tokens) > 1
|
| 1032 |
+
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
|
| 1033 |
+
else:
|
| 1034 |
+
x = embs
|
| 1035 |
+
|
| 1036 |
+
for i in range(args.n_layer):
|
| 1037 |
+
bbb = f'blocks.{i}.'
|
| 1038 |
+
att = f'blocks.{i}.att.'
|
| 1039 |
+
ffn = f'blocks.{i}.ffn.'
|
| 1040 |
+
dd = self.strategy[i]
|
| 1041 |
+
dev = dd.device
|
| 1042 |
+
atype = dd.atype
|
| 1043 |
+
wtype = dd.wtype
|
| 1044 |
+
if seq_mode:
|
| 1045 |
+
cuda_applicable = os.environ["RWKV_CUDA_ON"] == '1' and 'cuda' in str(dev)
|
| 1046 |
+
if cuda_applicable:
|
| 1047 |
+
ATT = self.cuda_att_seq
|
| 1048 |
+
else:
|
| 1049 |
+
ATT = self.att_seq
|
| 1050 |
+
if self.version == 5:
|
| 1051 |
+
ATT = self.att_seq_v5
|
| 1052 |
+
elif self.version == 5.1:
|
| 1053 |
+
ATT = self.att_seq_v5_1
|
| 1054 |
+
elif self.version == 5.2:
|
| 1055 |
+
ATT = self.att_seq_v5_2
|
| 1056 |
+
if cuda_applicable:
|
| 1057 |
+
ATT = self.cuda_att_seq_v5_2
|
| 1058 |
+
elif self.version == 6.0:
|
| 1059 |
+
ATT = self.att_seq_v6_0
|
| 1060 |
+
if cuda_applicable:
|
| 1061 |
+
ATT = self.cuda_att_seq_v6_0
|
| 1062 |
+
FFN = self.ffn_seq
|
| 1063 |
+
if self.version >= 6.0:
|
| 1064 |
+
FFN = self.ffn_seq_v6
|
| 1065 |
+
else:
|
| 1066 |
+
ATT = self.att_one
|
| 1067 |
+
if self.version == 5:
|
| 1068 |
+
ATT = self.att_one_v5
|
| 1069 |
+
elif self.version == 5.1:
|
| 1070 |
+
ATT = self.att_one_v5_1
|
| 1071 |
+
elif self.version == 5.2:
|
| 1072 |
+
ATT = self.att_one_v5_1 # same as v5.1
|
| 1073 |
+
elif self.version == 6.0:
|
| 1074 |
+
ATT = self.att_one_v6_0
|
| 1075 |
+
FFN = self.ffn_one
|
| 1076 |
+
if self.version >= 6.0:
|
| 1077 |
+
FFN = self.ffn_one_v6
|
| 1078 |
+
|
| 1079 |
+
x = x.to(dtype=atype, device=dev)
|
| 1080 |
+
|
| 1081 |
+
kw = w[f'{att}key.weight']
|
| 1082 |
+
vw = w[f'{att}value.weight']
|
| 1083 |
+
rw = w[f'{att}receptance.weight']
|
| 1084 |
+
ow = w[f'{att}output.weight']
|
| 1085 |
+
if dd.stream:
|
| 1086 |
+
kw = kw.to(device=dev, non_blocking=True)
|
| 1087 |
+
vw = vw.to(device=dev, non_blocking=True)
|
| 1088 |
+
rw = rw.to(device=dev, non_blocking=True)
|
| 1089 |
+
ow = ow.to(device=dev, non_blocking=True)
|
| 1090 |
+
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
|
| 1091 |
+
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
|
| 1092 |
+
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
|
| 1093 |
+
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
|
| 1094 |
+
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
|
| 1095 |
+
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
|
| 1096 |
+
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
|
| 1097 |
+
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
|
| 1098 |
+
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
|
| 1099 |
+
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
|
| 1100 |
+
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
|
| 1101 |
+
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
|
| 1102 |
+
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
|
| 1103 |
+
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
|
| 1104 |
+
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
|
| 1105 |
+
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
|
| 1106 |
+
if self.version in [5.1, 5.2, 6.0]:
|
| 1107 |
+
gw = w[f'{att}gate.weight']
|
| 1108 |
+
if dd.stream:
|
| 1109 |
+
gw = gw.to(device=dev, non_blocking=True)
|
| 1110 |
+
gmx = w[f'{att}gate.weight_mx'] if wtype == torch.uint8 else x
|
| 1111 |
+
grx = w[f'{att}gate.weight_rx'] if wtype == torch.uint8 else x
|
| 1112 |
+
gmy = w[f'{att}gate.weight_my'] if wtype == torch.uint8 else x
|
| 1113 |
+
gry = w[f'{att}gate.weight_ry'] if wtype == torch.uint8 else x
|
| 1114 |
+
if self.version == 4:
|
| 1115 |
+
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
|
| 1116 |
+
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
|
| 1117 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
| 1118 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
| 1119 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
| 1120 |
+
kw, vw, rw, ow,
|
| 1121 |
+
kmx, krx, kmy, kry,
|
| 1122 |
+
vmx, vrx, vmy, vry,
|
| 1123 |
+
rmx, rrx, rmy, rry,
|
| 1124 |
+
omx, orx, omy, ory,
|
| 1125 |
+
)
|
| 1126 |
+
elif self.version == 5:
|
| 1127 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
| 1128 |
+
x, state[i*3+0], state[i*3+1],
|
| 1129 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
| 1130 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
| 1131 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
| 1132 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
| 1133 |
+
kw, vw, rw, ow,
|
| 1134 |
+
kmx, krx, kmy, kry,
|
| 1135 |
+
vmx, vrx, vmy, vry,
|
| 1136 |
+
rmx, rrx, rmy, rry,
|
| 1137 |
+
omx, orx, omy, ory,
|
| 1138 |
+
)
|
| 1139 |
+
elif self.version in [5.1, 5.2]:
|
| 1140 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
| 1141 |
+
x, state[i*3+0], state[i*3+1],
|
| 1142 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
| 1143 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
| 1144 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'], w[f'{att}time_mix_g'],
|
| 1145 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
| 1146 |
+
kw, vw, rw, gw, ow,
|
| 1147 |
+
kmx, krx, kmy, kry,
|
| 1148 |
+
vmx, vrx, vmy, vry,
|
| 1149 |
+
rmx, rrx, rmy, rry,
|
| 1150 |
+
gmx, grx, gmy, gry,
|
| 1151 |
+
omx, orx, omy, ory,
|
| 1152 |
+
)
|
| 1153 |
+
elif self.version == 6.0:
|
| 1154 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
| 1155 |
+
x, state[i*3+0], state[i*3+1],
|
| 1156 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
| 1157 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
| 1158 |
+
w[f'{att}time_maa_x'], w[f'{att}time_maa_w'], w[f'{att}time_maa_k'], w[f'{att}time_maa_v'], w[f'{att}time_maa_r'], w[f'{att}time_maa_g'],
|
| 1159 |
+
w[f'{att}time_maa_w1'], w[f'{att}time_maa_w2'], w[f'{att}time_decay_w1'], w[f'{att}time_decay_w2'],
|
| 1160 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
| 1161 |
+
kw, vw, rw, gw, ow,
|
| 1162 |
+
kmx, krx, kmy, kry,
|
| 1163 |
+
vmx, vrx, vmy, vry,
|
| 1164 |
+
rmx, rrx, rmy, rry,
|
| 1165 |
+
gmx, grx, gmy, gry,
|
| 1166 |
+
omx, orx, omy, ory,
|
| 1167 |
+
)
|
| 1168 |
+
if dd.stream:
|
| 1169 |
+
del kw, vw, rw, ow
|
| 1170 |
+
if self.version in [5.1, 5.2, 6.0]:
|
| 1171 |
+
del gw
|
| 1172 |
+
|
| 1173 |
+
kw = w[f'{ffn}key.weight']
|
| 1174 |
+
vw = w[f'{ffn}value.weight']
|
| 1175 |
+
rw = w[f'{ffn}receptance.weight']
|
| 1176 |
+
if dd.stream:
|
| 1177 |
+
kw = kw.to(device=dev, non_blocking=True)
|
| 1178 |
+
vw = vw.to(device=dev, non_blocking=True)
|
| 1179 |
+
rw = rw.to(device=dev, non_blocking=True)
|
| 1180 |
+
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
|
| 1181 |
+
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
|
| 1182 |
+
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
|
| 1183 |
+
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
|
| 1184 |
+
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
|
| 1185 |
+
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
|
| 1186 |
+
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
|
| 1187 |
+
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
|
| 1188 |
+
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
|
| 1189 |
+
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
|
| 1190 |
+
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
|
| 1191 |
+
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
|
| 1192 |
+
if self.version == 4:
|
| 1193 |
+
offset = i*5+4
|
| 1194 |
+
elif int(self.version) in [5,6]:
|
| 1195 |
+
offset = i*3+2
|
| 1196 |
+
if self.version < 6.0:
|
| 1197 |
+
x, state[offset] = FFN(
|
| 1198 |
+
x, state[offset],
|
| 1199 |
+
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
| 1200 |
+
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
|
| 1201 |
+
kw, vw, rw,
|
| 1202 |
+
kmx, krx, kmy, kry,
|
| 1203 |
+
vmx, vrx, vmy, vry,
|
| 1204 |
+
rmx, rrx, rmy, rry,
|
| 1205 |
+
)
|
| 1206 |
+
else:
|
| 1207 |
+
x, state[offset] = FFN(
|
| 1208 |
+
x, state[offset],
|
| 1209 |
+
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
| 1210 |
+
w[f'{ffn}time_maa_k'], w[f'{ffn}time_maa_r'],
|
| 1211 |
+
kw, vw, rw,
|
| 1212 |
+
kmx, krx, kmy, kry,
|
| 1213 |
+
vmx, vrx, vmy, vry,
|
| 1214 |
+
rmx, rrx, rmy, rry,
|
| 1215 |
+
)
|
| 1216 |
+
if dd.stream:
|
| 1217 |
+
del kw, vw, rw
|
| 1218 |
+
|
| 1219 |
+
if self.RESCALE_LAYER > 0:
|
| 1220 |
+
if (i+1) % self.RESCALE_LAYER == 0:
|
| 1221 |
+
x = x / 2
|
| 1222 |
+
|
| 1223 |
+
dd = self.strategy[args.n_layer]
|
| 1224 |
+
x = x[-1,:] if (seq_mode and (not full_output)) else x
|
| 1225 |
+
x = x.to(dtype=dd.atype, device=dd.device)
|
| 1226 |
+
|
| 1227 |
+
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
|
| 1228 |
+
if w['head.weight'].dtype != torch.uint8:
|
| 1229 |
+
x = x @ w['head.weight']
|
| 1230 |
+
else:
|
| 1231 |
+
if seq_mode and full_output:
|
| 1232 |
+
x = mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
| 1233 |
+
else:
|
| 1234 |
+
x = mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
| 1235 |
+
|
| 1236 |
+
return x.float(), state
|
modeling_vision.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import CLIPVisionModel
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
@dataclass
|
| 8 |
+
class VisionEncoderConfig:
|
| 9 |
+
n_embd: int = 2048
|
| 10 |
+
vision_tower_name: str = 'openai/clip-vit-large-patch14-336'
|
| 11 |
+
grid_size: int = -1 # -1: no grid pooling, 0: take cls token, 1: global avg pooling, 2, 3, 4, ...: grid pooling
|
| 12 |
+
|
| 13 |
+
class VisionEncoder(nn.Module):
|
| 14 |
+
def __init__(self, args):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.args = args
|
| 17 |
+
self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name)
|
| 18 |
+
self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False)
|
| 19 |
+
|
| 20 |
+
def encode_images(self, images):
|
| 21 |
+
B, N, C, H, W = images.shape
|
| 22 |
+
images = images.view(B*N, C, H, W)
|
| 23 |
+
image_features = self.vit(images).last_hidden_state
|
| 24 |
+
L, D = image_features.shape[1], image_features.shape[2]
|
| 25 |
+
# rerange [B*N, L, D] -> [B, N, L, D]
|
| 26 |
+
image_features = image_features.view(B, N, L, D)[:, 0, :, :]
|
| 27 |
+
image_features = self.grid_pooling(image_features)
|
| 28 |
+
return self.proj(image_features)
|
| 29 |
+
|
| 30 |
+
def grid_pooling(self, image_features):
|
| 31 |
+
if self.args.grid_size == -1: # no grid pooling
|
| 32 |
+
return image_features
|
| 33 |
+
if self.args.grid_size == 0: # take cls token
|
| 34 |
+
return image_features[:, 0:1, :]
|
| 35 |
+
if self.args.grid_size == 1: # global avg pooling
|
| 36 |
+
return image_features.mean(dim=1, keepdim=True)
|
| 37 |
+
cls_features = image_features[:, 0:1, :]
|
| 38 |
+
image_features = image_features[:, 1:, :] #drop cls token
|
| 39 |
+
B, L, D = image_features.shape
|
| 40 |
+
H_or_W = int(L**0.5)
|
| 41 |
+
image_features = image_features.view(B, H_or_W, H_or_W, D)
|
| 42 |
+
grid_stride = H_or_W // self.args.grid_size
|
| 43 |
+
image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2),
|
| 44 |
+
padding=0,
|
| 45 |
+
kernel_size=grid_stride,
|
| 46 |
+
stride=grid_stride)
|
| 47 |
+
image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D)
|
| 48 |
+
return torch.cat((cls_features, image_features), dim=1)
|