hrid0yyy commited on
Commit
3c788af
·
verified ·
1 Parent(s): 2494a33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py CHANGED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import Wav2Vec2Processor
3
+ import torch
4
+ import librosa
5
+ import numpy as np
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ class Wav2Vec2Classifier(torch.nn.Module):
9
+ def __init__(self, num_classes):
10
+ super().__init__()
11
+ from transformers import Wav2Vec2Model
12
+ self.wav2vec2 = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
13
+ self.dropout = torch.nn.Dropout(0.3)
14
+ self.classifier = torch.nn.Linear(self.wav2vec2.config.hidden_size, num_classes)
15
+
16
+ def forward(self, input_values, attention_mask=None):
17
+ outputs = self.wav2vec2(input_values, attention_mask=attention_mask)
18
+ pooled_output = outputs.last_hidden_state.mean(dim=1)
19
+ pooled_output = self.dropout(pooled_output)
20
+ logits = self.classifier(pooled_output)
21
+ return logits
22
+
23
+ processor = Wav2Vec2Processor.from_pretrained("hrid0yyy/BornoNet")
24
+ num_classes = 50
25
+ model = Wav2Vec2Classifier(num_classes=num_classes)
26
+ model.load_state_dict(torch.load(hf_hub_download("hrid0yyy/BornoNet", "pytorch_model.bin"), map_location="cpu"))
27
+ model.eval()
28
+ le_classes = np.load(hf_hub_download("hrid0yyy/BornoNet", "label_encoder_classes.npy"), allow_pickle=True)
29
+
30
+ def predict(audio):
31
+ try:
32
+ y, sr = librosa.load(audio, sr=16000)
33
+ inputs = processor(y, sampling_rate=sr, return_tensors="pt", padding=True)
34
+ with torch.no_grad():
35
+ logits = model(inputs.input_values)
36
+ predicted = le_classes[torch.argmax(logits, dim=1).item()]
37
+ return f"Predicted character: {predicted}"
38
+ except Exception as e:
39
+ return f"Error processing audio: {str(e)}"
40
+
41
+ iface = gr.Interface(
42
+ fn=predict,
43
+ inputs=gr.Audio(type="filepath", label="Upload an MP3 file (16kHz)"),
44
+ outputs=gr.Textbox(label="Prediction"),
45
+ title="BornoNet: Bengali Speech Recognition",
46
+ description="Upload a 16kHz MP3 file to classify Bengali speech into characters (e.g., ত, অ, ক)."
47
+ )
48
+ iface.launch()