File size: 1,479 Bytes
4d871c7
8b4afb4
4d871c7
 
 
8b4afb4
6453441
8b4afb4
4d871c7
 
 
8b4afb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e41b8
8b4afb4
 
 
 
3ee81c0
8b4afb4
 
 
 
a9b4927
8b4afb4
 
4d871c7
 
8b4afb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline

# 載入模型和標記器
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)


def respond(prompt):
    messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt }
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)    
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512
    )    
    
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]    
    
    # 返回新的消息格式
    print(f"Messages: {messages}")
    print(f"Reply: {response}")
    return response
    
# 設定 Gradio 的聊天界面
demo = gr.ChatInterface(fn=respond, title="# DeepSeek-R1-Distill-Qwen-1.5B-openvino Chat", description="Chat with DeepSeek-R1-Distill-Qwen-1.5B-openvino model.", type='messages')

if __name__ == "__main__":
    demo.launch()